Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56912 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{1}M_{2}$ + ${ }M_{2}M_{7}$ 0.7056 0.8711 0.81 [M:[0.9191, 1.0809, 1.027, 0.8652, 1.0, 0.973, 0.9191], q:[0.473, 0.6079], qb:[0.4461, 0.527], phi:[0.4865]] [M:[[-6], [6], [2], [-10], [0], [-2], [-6]], q:[[-2], [8]], qb:[[-4], [2]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }M_{7}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{5}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}q_{2}\tilde{q}_{1}$ ${}$ -3 t^2.596 + 2*t^2.757 + 2*t^2.919 + t^3. + t^3.162 + t^4.136 + t^4.217 + t^4.298 + t^4.379 + t^4.46 + 2*t^4.621 + t^4.702 + t^4.864 + t^5.107 + t^5.191 + 2*t^5.353 + 4*t^5.515 + 4*t^5.676 + t^5.757 + 2*t^5.838 + 3*t^5.919 - 3*t^6. + t^6.081 - t^6.162 - 2*t^6.243 + t^6.324 - t^6.404 - t^6.485 + t^6.731 + t^6.812 + 3*t^6.893 + 2*t^6.974 + 4*t^7.055 + 4*t^7.136 + 3*t^7.217 + 3*t^7.298 + 4*t^7.379 + 2*t^7.54 + 3*t^7.621 - 3*t^7.702 + 2*t^7.783 + t^7.787 + t^7.864 - 2*t^7.945 + 2*t^7.948 + 2*t^8.026 + 4*t^8.11 - t^8.188 + t^8.269 + 7*t^8.272 + t^8.353 + 7*t^8.434 + 2*t^8.515 + 3*t^8.596 + 2*t^8.676 - 3*t^8.757 + 4*t^8.838 - 7*t^8.919 - t^4.46/y - t^7.055/y - t^7.217/y - t^7.379/y + t^7.54/y + t^7.702/y + t^7.864/y + (2*t^8.353)/y + (3*t^8.515)/y + t^8.596/y + (4*t^8.676)/y + (3*t^8.757)/y + t^8.838/y + (4*t^8.919)/y - t^4.46*y - t^7.055*y - t^7.217*y - t^7.379*y + t^7.54*y + t^7.702*y + t^7.864*y + 2*t^8.353*y + 3*t^8.515*y + t^8.596*y + 4*t^8.676*y + 3*t^8.757*y + t^8.838*y + 4*t^8.919*y t^2.596/g1^10 + (2*t^2.757)/g1^6 + (2*t^2.919)/g1^2 + t^3. + g1^4*t^3.162 + t^4.136/g1^9 + t^4.217/g1^7 + t^4.298/g1^5 + t^4.379/g1^3 + t^4.46/g1 + 2*g1^3*t^4.621 + g1^5*t^4.702 + g1^9*t^4.864 + g1^15*t^5.107 + t^5.191/g1^20 + (2*t^5.353)/g1^16 + (4*t^5.515)/g1^12 + (4*t^5.676)/g1^8 + t^5.757/g1^6 + (2*t^5.838)/g1^4 + (3*t^5.919)/g1^2 - 3*t^6. + g1^2*t^6.081 - g1^4*t^6.162 - 2*g1^6*t^6.243 + g1^8*t^6.324 - g1^10*t^6.404 - g1^12*t^6.485 + t^6.731/g1^19 + t^6.812/g1^17 + (3*t^6.893)/g1^15 + (2*t^6.974)/g1^13 + (4*t^7.055)/g1^11 + (4*t^7.136)/g1^9 + (3*t^7.217)/g1^7 + (3*t^7.298)/g1^5 + (4*t^7.379)/g1^3 + 2*g1*t^7.54 + 3*g1^3*t^7.621 - 3*g1^5*t^7.702 + 2*g1^7*t^7.783 + t^7.787/g1^30 + g1^9*t^7.864 - 2*g1^11*t^7.945 + (2*t^7.948)/g1^26 + 2*g1^13*t^8.026 + (4*t^8.11)/g1^22 - g1^17*t^8.188 + g1^19*t^8.269 + (7*t^8.272)/g1^18 + t^8.353/g1^16 + (7*t^8.434)/g1^14 + (2*t^8.515)/g1^12 + (3*t^8.596)/g1^10 + (2*t^8.676)/g1^8 - (3*t^8.757)/g1^6 + (4*t^8.838)/g1^4 - (7*t^8.919)/g1^2 - t^4.46/(g1*y) - t^7.055/(g1^11*y) - t^7.217/(g1^7*y) - t^7.379/(g1^3*y) + (g1*t^7.54)/y + (g1^5*t^7.702)/y + (g1^9*t^7.864)/y + (2*t^8.353)/(g1^16*y) + (3*t^8.515)/(g1^12*y) + t^8.596/(g1^10*y) + (4*t^8.676)/(g1^8*y) + (3*t^8.757)/(g1^6*y) + t^8.838/(g1^4*y) + (4*t^8.919)/(g1^2*y) - (t^4.46*y)/g1 - (t^7.055*y)/g1^11 - (t^7.217*y)/g1^7 - (t^7.379*y)/g1^3 + g1*t^7.54*y + g1^5*t^7.702*y + g1^9*t^7.864*y + (2*t^8.353*y)/g1^16 + (3*t^8.515*y)/g1^12 + (t^8.596*y)/g1^10 + (4*t^8.676*y)/g1^8 + (3*t^8.757*y)/g1^6 + (t^8.838*y)/g1^4 + (4*t^8.919*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55266 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{1}M_{2}$ 0.6991 0.8584 0.8143 [M:[0.9398, 1.0602, 1.0201, 0.8997, 1.0, 0.9799], q:[0.4799, 0.5802], qb:[0.4599, 0.5201], phi:[0.49]] t^2.699 + t^2.82 + 2*t^2.94 + t^3. + t^3.12 + t^3.18 + t^4.229 + t^4.289 + t^4.35 + t^4.41 + t^4.47 + 2*t^4.59 + t^4.65 + t^4.771 + t^4.951 + t^5.398 + t^5.519 + 2*t^5.639 + 2*t^5.759 + 3*t^5.88 + 2*t^5.94 - 2*t^6. - t^4.47/y - t^4.47*y detail