Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56872 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_4^2$ + $ M_5\phi_1^2$ + $ M_6q_2\tilde{q}_1$ + $ \phi_1q_2^2$ + $ M_7\phi_1\tilde{q}_2^2$ 0.6065 0.7781 0.7795 [X:[], M:[0.7455, 0.9643, 1.2545, 1.0, 1.0179, 0.7098, 1.0179], q:[0.5, 0.7545], qb:[0.5357, 0.2455], phi:[0.4911]] [X:[], M:[[1], [8], [-1], [0], [-4], [9], [-4]], q:[[0], [-1]], qb:[[-8], [1]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_2$, $ M_4$, $ M_5$, $ M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_1M_6$, $ M_1^2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2M_6$, $ M_1M_2$, $ M_4M_6$, $ M_5M_6$, $ M_6M_7$, $ M_1M_4$, $ \phi_1q_1q_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1M_5$, $ M_1M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_6\phi_1q_1\tilde{q}_2$, $ M_2M_4$, $ M_3M_6$, $ M_2M_5$, $ M_2M_7$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ . -2 t^2.13 + t^2.24 + t^2.34 + t^2.89 + t^3. + 2*t^3.05 + t^3.71 + t^3.76 + t^3.82 + t^4.26 + t^4.37 + 3*t^4.47 + 2*t^4.58 + 2*t^4.69 + t^5.02 + t^5.13 + 2*t^5.18 + t^5.24 + 2*t^5.29 + t^5.34 + 2*t^5.4 + t^5.79 + t^5.84 + t^5.89 + 3*t^5.95 - 2*t^6. + 3*t^6.05 + 2*t^6.11 + t^6.16 + t^6.39 + t^6.5 + 3*t^6.6 + 3*t^6.71 + 5*t^6.82 + 2*t^6.92 + 2*t^7.03 + t^7.15 + t^7.26 + 2*t^7.31 + t^7.37 + 2*t^7.42 + t^7.47 + 4*t^7.53 + t^7.58 + 3*t^7.63 + t^7.69 + 3*t^7.74 + t^7.91 + t^7.97 + t^8.02 + 3*t^8.08 - 3*t^8.13 + 4*t^8.18 - t^8.24 + 3*t^8.29 - 2*t^8.34 + 3*t^8.4 + 2*t^8.45 + 2*t^8.5 + t^8.52 + t^8.62 + t^8.68 + 3*t^8.73 + t^8.79 + 4*t^8.84 - 3*t^8.89 + 5*t^8.95 - t^4.47/y - t^6.6/y + t^7.42/y + t^7.47/y - t^7.53/y + (2*t^7.58)/y + t^8.02/y + (2*t^8.13)/y + (2*t^8.18)/y + (2*t^8.24)/y + (2*t^8.29)/y + (2*t^8.34)/y + (2*t^8.4)/y - t^8.73/y + t^8.84/y + (2*t^8.89)/y + (4*t^8.95)/y - t^4.47*y - t^6.6*y + t^7.42*y + t^7.47*y - t^7.53*y + 2*t^7.58*y + t^8.02*y + 2*t^8.13*y + 2*t^8.18*y + 2*t^8.24*y + 2*t^8.29*y + 2*t^8.34*y + 2*t^8.4*y - t^8.73*y + t^8.84*y + 2*t^8.89*y + 4*t^8.95*y g1^9*t^2.13 + g1*t^2.24 + t^2.34/g1^7 + g1^8*t^2.89 + t^3. + (2*t^3.05)/g1^4 + g1^3*t^3.71 + t^3.76/g1 + t^3.82/g1^5 + g1^18*t^4.26 + g1^10*t^4.37 + 3*g1^2*t^4.47 + (2*t^4.58)/g1^6 + (2*t^4.69)/g1^14 + g1^17*t^5.02 + g1^9*t^5.13 + 2*g1^5*t^5.18 + g1*t^5.24 + (2*t^5.29)/g1^3 + t^5.34/g1^7 + (2*t^5.4)/g1^11 + g1^16*t^5.79 + g1^12*t^5.84 + g1^8*t^5.89 + 3*g1^4*t^5.95 - 2*t^6. + (3*t^6.05)/g1^4 + (2*t^6.11)/g1^8 + t^6.16/g1^12 + g1^27*t^6.39 + g1^19*t^6.5 + 3*g1^11*t^6.6 + 3*g1^3*t^6.71 + (5*t^6.82)/g1^5 + (2*t^6.92)/g1^13 + (2*t^7.03)/g1^21 + g1^26*t^7.15 + g1^18*t^7.26 + 2*g1^14*t^7.31 + g1^10*t^7.37 + 2*g1^6*t^7.42 + g1^2*t^7.47 + (4*t^7.53)/g1^2 + t^7.58/g1^6 + (3*t^7.63)/g1^10 + t^7.69/g1^14 + (3*t^7.74)/g1^18 + g1^25*t^7.91 + g1^21*t^7.97 + g1^17*t^8.02 + 3*g1^13*t^8.08 - 3*g1^9*t^8.13 + 4*g1^5*t^8.18 - g1*t^8.24 + (3*t^8.29)/g1^3 - (2*t^8.34)/g1^7 + (3*t^8.4)/g1^11 + (2*t^8.45)/g1^15 + (2*t^8.5)/g1^19 + g1^36*t^8.52 + g1^28*t^8.62 + g1^24*t^8.68 + 3*g1^20*t^8.73 + g1^16*t^8.79 + 4*g1^12*t^8.84 - 3*g1^8*t^8.89 + 5*g1^4*t^8.95 - (g1^2*t^4.47)/y - (g1^11*t^6.6)/y + (g1^6*t^7.42)/y + (g1^2*t^7.47)/y - t^7.53/(g1^2*y) + (2*t^7.58)/(g1^6*y) + (g1^17*t^8.02)/y + (2*g1^9*t^8.13)/y + (2*g1^5*t^8.18)/y + (2*g1*t^8.24)/y + (2*t^8.29)/(g1^3*y) + (2*t^8.34)/(g1^7*y) + (2*t^8.4)/(g1^11*y) - (g1^20*t^8.73)/y + (g1^12*t^8.84)/y + (2*g1^8*t^8.89)/y + (4*g1^4*t^8.95)/y - g1^2*t^4.47*y - g1^11*t^6.6*y + g1^6*t^7.42*y + g1^2*t^7.47*y - (t^7.53*y)/g1^2 + (2*t^7.58*y)/g1^6 + g1^17*t^8.02*y + 2*g1^9*t^8.13*y + 2*g1^5*t^8.18*y + 2*g1*t^8.24*y + (2*t^8.29*y)/g1^3 + (2*t^8.34*y)/g1^7 + (2*t^8.4*y)/g1^11 - g1^20*t^8.73*y + g1^12*t^8.84*y + 2*g1^8*t^8.89*y + 4*g1^4*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55217 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_4^2$ + $ M_5\phi_1^2$ + $ M_6q_2\tilde{q}_1$ + $ \phi_1q_2^2$ 0.6087 0.7818 0.7785 [X:[], M:[0.7432, 0.9453, 1.2568, 1.0, 1.0274, 0.6884], q:[0.5, 0.7568], qb:[0.5547, 0.2432], phi:[0.4863]] t^2.07 + t^2.23 + t^2.39 + t^2.84 + t^2.92 + t^3. + t^3.08 + t^3.69 + t^3.77 + t^3.85 + t^4.13 + t^4.29 + 3*t^4.46 + 2*t^4.62 + 2*t^4.79 + t^4.9 + t^4.98 + t^5.07 + 2*t^5.15 + t^5.23 + 2*t^5.31 + t^5.39 + t^5.48 + t^5.67 + 2*t^5.75 + 2*t^5.84 + 3*t^5.92 - t^6. - t^4.46/y - t^4.46*y detail