Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56871 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_4^2$ + $ M_5\phi_1^2$ + $ M_6q_2\tilde{q}_1$ + $ \phi_1q_2^2$ + $ M_2M_7$ 0.6053 0.7765 0.7795 [X:[], M:[0.7479, 0.9834, 1.2521, 1.0, 1.0083, 0.7313, 1.0166], q:[0.5, 0.7521], qb:[0.5166, 0.2479], phi:[0.4958]] [X:[], M:[[1], [8], [-1], [0], [-4], [9], [-8]], q:[[0], [-1]], qb:[[-8], [1]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4$, $ M_5$, $ M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_1M_6$, $ M_1^2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_6\phi_1\tilde{q}_2^2$, $ M_5M_6$, $ M_1\phi_1\tilde{q}_2^2$, $ M_1M_4$, $ M_6M_7$, $ \phi_1q_1q_2$, $ M_1M_5$, $ \phi_1\tilde{q}_1\tilde{q}_2^3$, $ M_1M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ M_6\phi_1q_1\tilde{q}_2$, $ M_3M_6$, $ \phi_1^2\tilde{q}_2^4$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_2^2$ . -1 t^2.19 + t^2.24 + t^2.29 + t^2.98 + t^3. + t^3.02 + t^3.05 + t^3.73 + t^3.76 + t^3.78 + t^4.39 + t^4.44 + 3*t^4.49 + 2*t^4.54 + 2*t^4.59 + t^5.17 + 2*t^5.22 + t^5.24 + 2*t^5.27 + 2*t^5.29 + t^5.32 + t^5.34 + t^5.93 + t^5.95 + 2*t^5.98 - t^6. + 3*t^6.02 + t^6.05 + 2*t^6.07 + t^6.1 + t^6.58 + t^6.63 + 2*t^6.68 + 3*t^6.73 + 5*t^6.78 + 3*t^6.83 + 2*t^6.88 + t^7.36 + 2*t^7.41 - t^7.44 + 4*t^7.46 + 3*t^7.51 + 2*t^7.54 + 3*t^7.56 + 3*t^7.59 + t^7.61 + 2*t^7.64 + t^8.12 + t^8.14 + t^8.17 - 2*t^8.19 + 3*t^8.22 - 2*t^8.24 + 4*t^8.27 - 2*t^8.29 + 4*t^8.32 + 2*t^8.34 + 3*t^8.37 + t^8.39 + t^8.78 + t^8.83 + 2*t^8.88 + t^8.9 + 2*t^8.93 + 2*t^8.98 - t^4.49/y - t^6.68/y + t^7.44/y + t^7.49/y + t^7.54/y + t^8.17/y + t^8.19/y + (2*t^8.22)/y + (2*t^8.24)/y + (2*t^8.27)/y + (3*t^8.29)/y + t^8.32/y + t^8.34/y - t^8.88/y + t^8.93/y + t^8.95/y + (3*t^8.98)/y - t^4.49*y - t^6.68*y + t^7.44*y + t^7.49*y + t^7.54*y + t^8.17*y + t^8.19*y + 2*t^8.22*y + 2*t^8.24*y + 2*t^8.27*y + 3*t^8.29*y + t^8.32*y + t^8.34*y - t^8.88*y + t^8.93*y + t^8.95*y + 3*t^8.98*y g1^9*t^2.19 + g1*t^2.24 + t^2.29/g1^7 + g1^4*t^2.98 + t^3. + t^3.02/g1^4 + t^3.05/g1^8 + g1^3*t^3.73 + t^3.76/g1 + t^3.78/g1^5 + g1^18*t^4.39 + g1^10*t^4.44 + 3*g1^2*t^4.49 + (2*t^4.54)/g1^6 + (2*t^4.59)/g1^14 + g1^13*t^5.17 + 2*g1^5*t^5.22 + g1*t^5.24 + (2*t^5.27)/g1^3 + (2*t^5.29)/g1^7 + t^5.32/g1^11 + t^5.34/g1^15 + g1^12*t^5.93 + g1^8*t^5.95 + 2*g1^4*t^5.98 - t^6. + (3*t^6.02)/g1^4 + t^6.05/g1^8 + (2*t^6.07)/g1^12 + t^6.1/g1^16 + g1^27*t^6.58 + g1^19*t^6.63 + 2*g1^11*t^6.68 + 3*g1^3*t^6.73 + (5*t^6.78)/g1^5 + (3*t^6.83)/g1^13 + (2*t^6.88)/g1^21 + g1^22*t^7.36 + 2*g1^14*t^7.41 - g1^10*t^7.44 + 4*g1^6*t^7.46 + (3*t^7.51)/g1^2 + (2*t^7.54)/g1^6 + (3*t^7.56)/g1^10 + (3*t^7.59)/g1^14 + t^7.61/g1^18 + (2*t^7.64)/g1^22 + g1^21*t^8.12 + g1^17*t^8.14 + g1^13*t^8.17 - 2*g1^9*t^8.19 + 3*g1^5*t^8.22 - 2*g1*t^8.24 + (4*t^8.27)/g1^3 - (2*t^8.29)/g1^7 + (4*t^8.32)/g1^11 + (2*t^8.34)/g1^15 + (3*t^8.37)/g1^19 + t^8.39/g1^23 + g1^36*t^8.78 + g1^28*t^8.83 + 2*g1^20*t^8.88 + g1^16*t^8.9 + 2*g1^12*t^8.93 + 2*g1^4*t^8.98 - (g1^2*t^4.49)/y - (g1^11*t^6.68)/y + (g1^10*t^7.44)/y + (g1^2*t^7.49)/y + t^7.54/(g1^6*y) + (g1^13*t^8.17)/y + (g1^9*t^8.19)/y + (2*g1^5*t^8.22)/y + (2*g1*t^8.24)/y + (2*t^8.27)/(g1^3*y) + (3*t^8.29)/(g1^7*y) + t^8.32/(g1^11*y) + t^8.34/(g1^15*y) - (g1^20*t^8.88)/y + (g1^12*t^8.93)/y + (g1^8*t^8.95)/y + (3*g1^4*t^8.98)/y - g1^2*t^4.49*y - g1^11*t^6.68*y + g1^10*t^7.44*y + g1^2*t^7.49*y + (t^7.54*y)/g1^6 + g1^13*t^8.17*y + g1^9*t^8.19*y + 2*g1^5*t^8.22*y + 2*g1*t^8.24*y + (2*t^8.27*y)/g1^3 + (3*t^8.29*y)/g1^7 + (t^8.32*y)/g1^11 + (t^8.34*y)/g1^15 - g1^20*t^8.88*y + g1^12*t^8.93*y + g1^8*t^8.95*y + 3*g1^4*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55217 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_4^2$ + $ M_5\phi_1^2$ + $ M_6q_2\tilde{q}_1$ + $ \phi_1q_2^2$ 0.6087 0.7818 0.7785 [X:[], M:[0.7432, 0.9453, 1.2568, 1.0, 1.0274, 0.6884], q:[0.5, 0.7568], qb:[0.5547, 0.2432], phi:[0.4863]] t^2.07 + t^2.23 + t^2.39 + t^2.84 + t^2.92 + t^3. + t^3.08 + t^3.69 + t^3.77 + t^3.85 + t^4.13 + t^4.29 + 3*t^4.46 + 2*t^4.62 + 2*t^4.79 + t^4.9 + t^4.98 + t^5.07 + 2*t^5.15 + t^5.23 + 2*t^5.31 + t^5.39 + t^5.48 + t^5.67 + 2*t^5.75 + 2*t^5.84 + 3*t^5.92 - t^6. - t^4.46/y - t^4.46*y detail