Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56867 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{2}M_{6}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}q_{1}^{2}$ | 0.7392 | 0.931 | 0.794 | [M:[0.931, 1.0546, 0.9598, 0.8362, 1.0546, 0.9454, 0.8362, 0.6767], q:[0.4253, 0.6437], qb:[0.5201, 0.5201], phi:[0.4727]] | [M:[[-4, 8], [2, 2], [0, -12], [-6, -6], [2, 2], [-2, -2], [-6, -6], [5, 17]], q:[[-2, -8], [6, 0]], qb:[[0, 6], [0, 6]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{8}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{1}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{8}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{3}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{8}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{2}$ | ${}M_{2}\phi_{1}^{2}$ | -4 | t^2.03 + 2*t^2.509 + t^2.793 + 2*t^2.836 + t^2.879 + t^3.164 + t^4.06 + 2*t^4.254 + 5*t^4.539 + t^4.625 + t^4.823 + 2*t^4.866 + 3*t^4.91 + 3*t^5.017 + t^5.194 + t^5.28 + 2*t^5.301 + 3*t^5.345 + 2*t^5.388 + t^5.586 + 6*t^5.672 + t^5.759 + t^5.957 - 4*t^6. + t^6.043 + t^6.09 - 2*t^6.371 + 5*t^6.569 + 3*t^6.763 + t^6.853 + 2*t^6.896 + 3*t^6.94 + 9*t^7.047 + 3*t^7.09 + t^7.134 + t^7.224 + t^7.31 + 5*t^7.332 + 7*t^7.375 + 5*t^7.418 + t^7.505 + 4*t^7.526 + t^7.616 + 6*t^7.702 - t^7.746 + 3*t^7.789 + 3*t^7.81 + 4*t^7.853 + 3*t^7.897 + t^7.987 - 6*t^8.03 + t^8.073 + 2*t^8.094 + t^8.12 + t^8.16 + 9*t^8.181 - t^8.224 + 2*t^8.268 + t^8.379 - 3*t^8.401 + 3*t^8.465 - 5*t^8.509 + 2*t^8.552 + 5*t^8.599 + t^8.638 + t^8.75 - 2*t^8.793 - 6*t^8.836 - 7*t^8.879 + t^8.883 + t^8.923 + 2*t^8.926 + 3*t^8.97 - t^4.418/y - t^6.448/y - (2*t^6.927)/y - t^7.211/y - t^7.298/y + (3*t^7.539)/y + t^7.625/y + t^7.823/y + (2*t^7.866)/y + (3*t^7.91)/y + t^8.017/y + t^8.194/y + (2*t^8.301)/y + (4*t^8.345)/y + (3*t^8.388)/y - t^8.478/y + (2*t^8.629)/y + (4*t^8.672)/y + (2*t^8.716)/y - t^8.957/y - t^4.418*y - t^6.448*y - 2*t^6.927*y - t^7.211*y - t^7.298*y + 3*t^7.539*y + t^7.625*y + t^7.823*y + 2*t^7.866*y + 3*t^7.91*y + t^8.017*y + t^8.194*y + 2*t^8.301*y + 4*t^8.345*y + 3*t^8.388*y - t^8.478*y + 2*t^8.629*y + 4*t^8.672*y + 2*t^8.716*y - t^8.957*y | g1^5*g2^17*t^2.03 + (2*t^2.509)/(g1^6*g2^6) + (g2^8*t^2.793)/g1^4 + (2*t^2.836)/(g1^2*g2^2) + t^2.879/g2^12 + g1^2*g2^2*t^3.164 + g1^10*g2^34*t^4.06 + (2*t^4.254)/(g1^3*g2^3) + (5*g2^11*t^4.539)/g1 + (g1^3*t^4.625)/g2^9 + g1*g2^25*t^4.823 + 2*g1^3*g2^15*t^4.866 + 3*g1^5*g2^5*t^4.91 + (3*t^5.017)/(g1^12*g2^12) + g1^7*g2^19*t^5.194 + (g1^11*t^5.28)/g2 + (2*g2^2*t^5.301)/g1^10 + (3*t^5.345)/(g1^8*g2^8) + (2*t^5.388)/(g1^6*g2^18) + (g2^16*t^5.586)/g1^8 + (6*t^5.672)/(g1^4*g2^4) + t^5.759/g2^24 + (g2^10*t^5.957)/g1^2 - 4*t^6. + (g1^2*t^6.043)/g2^10 + g1^15*g2^51*t^6.09 - (2*g1^6*t^6.371)/g2^6 + 5*g1^4*g2^28*t^6.569 + (3*t^6.763)/(g1^9*g2^9) + g1^6*g2^42*t^6.853 + 2*g1^8*g2^32*t^6.896 + 3*g1^10*g2^22*t^6.94 + (9*g2^5*t^7.047)/g1^7 + (3*t^7.09)/(g1^5*g2^5) + t^7.134/(g1^3*g2^15) + g1^12*g2^36*t^7.224 + g1^16*g2^16*t^7.31 + (5*g2^19*t^7.332)/g1^5 + (7*g2^9*t^7.375)/g1^3 + (5*t^7.418)/(g1*g2) + (g1^3*t^7.505)/g2^21 + (4*t^7.526)/(g1^18*g2^18) + (g2^33*t^7.616)/g1^3 + 6*g1*g2^13*t^7.702 - g1^3*g2^3*t^7.746 + (3*g1^5*t^7.789)/g2^7 + (3*t^7.81)/(g1^16*g2^4) + (4*t^7.853)/(g1^14*g2^14) + (3*t^7.897)/(g1^12*g2^24) + g1^3*g2^27*t^7.987 - 6*g1^5*g2^17*t^8.03 + g1^7*g2^7*t^8.073 + (2*g2^10*t^8.094)/g1^14 + g1^20*g2^68*t^8.12 + (g1^11*t^8.16)/g2^13 + (9*t^8.181)/(g1^10*g2^10) - t^8.224/(g1^8*g2^20) + (2*t^8.268)/(g1^6*g2^30) + (g2^24*t^8.379)/g1^12 - 3*g1^11*g2^11*t^8.401 + (3*g2^4*t^8.465)/g1^8 - (5*t^8.509)/(g1^6*g2^6) + (2*t^8.552)/(g1^4*g2^16) + 5*g1^9*g2^45*t^8.599 + t^8.638/g2^36 + (g2^18*t^8.75)/g1^6 - (2*g2^8*t^8.793)/g1^4 - (6*t^8.836)/(g1^2*g2^2) - (7*t^8.879)/g2^12 + g1^11*g2^59*t^8.883 + (g1^2*t^8.923)/g2^22 + 2*g1^13*g2^49*t^8.926 + 3*g1^15*g2^39*t^8.97 - t^4.418/(g1*g2*y) - (g1^4*g2^16*t^6.448)/y - (2*t^6.927)/(g1^7*g2^7*y) - (g2^7*t^7.211)/(g1^5*y) - t^7.298/(g1*g2^13*y) + (3*g2^11*t^7.539)/(g1*y) + (g1^3*t^7.625)/(g2^9*y) + (g1*g2^25*t^7.823)/y + (2*g1^3*g2^15*t^7.866)/y + (3*g1^5*g2^5*t^7.91)/y + t^8.017/(g1^12*g2^12*y) + (g1^7*g2^19*t^8.194)/y + (2*g2^2*t^8.301)/(g1^10*y) + (4*t^8.345)/(g1^8*g2^8*y) + (3*t^8.388)/(g1^6*g2^18*y) - (g1^9*g2^33*t^8.478)/y + (2*g2^6*t^8.629)/(g1^6*y) + (4*t^8.672)/(g1^4*g2^4*y) + (2*t^8.716)/(g1^2*g2^14*y) - (g2^10*t^8.957)/(g1^2*y) - (t^4.418*y)/(g1*g2) - g1^4*g2^16*t^6.448*y - (2*t^6.927*y)/(g1^7*g2^7) - (g2^7*t^7.211*y)/g1^5 - (t^7.298*y)/(g1*g2^13) + (3*g2^11*t^7.539*y)/g1 + (g1^3*t^7.625*y)/g2^9 + g1*g2^25*t^7.823*y + 2*g1^3*g2^15*t^7.866*y + 3*g1^5*g2^5*t^7.91*y + (t^8.017*y)/(g1^12*g2^12) + g1^7*g2^19*t^8.194*y + (2*g2^2*t^8.301*y)/g1^10 + (4*t^8.345*y)/(g1^8*g2^8) + (3*t^8.388*y)/(g1^6*g2^18) - g1^9*g2^33*t^8.478*y + (2*g2^6*t^8.629*y)/g1^6 + (4*t^8.672*y)/(g1^4*g2^4) + (2*t^8.716*y)/(g1^2*g2^14) - (g2^10*t^8.957*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55199 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{2}M_{6}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ | 0.7184 | 0.8903 | 0.8069 | [M:[0.9328, 1.0555, 0.9561, 0.8334, 1.0555, 0.9445, 0.8334], q:[0.4225, 0.6447], qb:[0.5219, 0.5219], phi:[0.4722]] | 2*t^2.5 + t^2.798 + 2*t^2.833 + t^2.868 + t^3.167 + t^3.952 + 2*t^4.25 + 3*t^4.548 + t^4.618 + 2*t^4.917 + 3*t^5. + t^5.285 + 2*t^5.298 + 3*t^5.333 + 2*t^5.368 + t^5.597 + 6*t^5.667 + t^5.737 + t^5.965 - 4*t^6. - t^4.417/y - t^4.417*y | detail |