Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56838 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.6918 0.8765 0.7893 [M:[1.1676, 1.039, 0.8324, 0.7933, 1.0838, 0.7486, 0.6705], q:[0.3967, 0.4357], qb:[0.5643, 0.771], phi:[0.4581]] [M:[[8], [-22], [-8], [14], [4], [-12], [32]], q:[[7], [-15]], qb:[[15], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{5}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{7}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{7}$, ${ }M_{2}M_{6}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{7}$, ${ }M_{4}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{7}\phi_{1}q_{1}q_{2}$ ${}$ -1 t^2.012 + t^2.246 + t^2.38 + t^2.497 + t^3. + t^3.117 + t^3.251 + t^3.503 + t^3.871 + t^4.006 + t^4.023 + 2*t^4.257 + t^4.374 + t^4.392 + t^4.491 + t^4.509 + t^4.626 + t^4.743 + 2*t^4.76 + t^4.877 + t^4.994 + t^5.012 + t^5.129 + t^5.246 + t^5.263 + t^5.363 + t^5.38 + 2*t^5.497 + t^5.514 + t^5.631 + 2*t^5.749 + t^5.883 - t^6. + t^6.017 + t^6.035 + t^6.117 + t^6.234 + 2*t^6.251 + 2*t^6.269 + t^6.369 + t^6.386 + t^6.403 + 3*t^6.503 + t^6.52 + t^6.62 + 2*t^6.637 + t^6.737 + 2*t^6.754 + 2*t^6.772 + t^6.871 + t^6.889 + t^6.988 + 3*t^7.006 + t^7.023 + t^7.123 + 3*t^7.14 + 3*t^7.257 + t^7.274 + 2*t^7.374 + t^7.392 + t^7.491 + 3*t^7.509 + t^7.526 + t^7.608 + t^7.626 + t^7.643 + 2*t^7.743 + 3*t^7.76 + 2*t^7.877 + t^7.894 + t^7.994 + t^8.012 + t^8.029 + t^8.046 + t^8.129 + 3*t^8.263 + 2*t^8.28 + t^8.363 - t^8.38 + t^8.397 + t^8.415 + t^8.48 + 3*t^8.514 + t^8.532 + t^8.614 + 2*t^8.631 + 2*t^8.649 + 3*t^8.749 + 3*t^8.766 + 2*t^8.783 + t^8.866 + t^8.883 + t^8.9 + t^8.983 - t^4.374/y - t^6.386/y - t^6.62/y - t^6.754/y + (2*t^7.257)/y + t^7.392/y - t^7.491/y + t^7.509/y + t^7.626/y + t^7.743/y + t^7.877/y + t^7.994/y + t^8.012/y + (2*t^8.129)/y + t^8.246/y + t^8.263/y + (2*t^8.363)/y + t^8.38/y - t^8.397/y + (3*t^8.497)/y + t^8.514/y + t^8.614/y + (2*t^8.749)/y - t^8.766/y - t^8.866/y + (2*t^8.883)/y - t^4.374*y - t^6.386*y - t^6.62*y - t^6.754*y + 2*t^7.257*y + t^7.392*y - t^7.491*y + t^7.509*y + t^7.626*y + t^7.743*y + t^7.877*y + t^7.994*y + t^8.012*y + 2*t^8.129*y + t^8.246*y + t^8.263*y + 2*t^8.363*y + t^8.38*y - t^8.397*y + 3*t^8.497*y + t^8.514*y + t^8.614*y + 2*t^8.749*y - t^8.766*y - t^8.866*y + 2*t^8.883*y g1^32*t^2.012 + t^2.246/g1^12 + g1^14*t^2.38 + t^2.497/g1^8 + t^3. + t^3.117/g1^22 + g1^4*t^3.251 + g1^8*t^3.503 + t^3.871/g1^10 + g1^16*t^4.006 + g1^64*t^4.023 + 2*g1^20*t^4.257 + t^4.374/g1^2 + g1^46*t^4.392 + t^4.491/g1^24 + g1^24*t^4.509 + g1^2*t^4.626 + t^4.743/g1^20 + 2*g1^28*t^4.76 + g1^6*t^4.877 + t^4.994/g1^16 + g1^32*t^5.012 + g1^10*t^5.129 + t^5.246/g1^12 + g1^36*t^5.263 + t^5.363/g1^34 + g1^14*t^5.38 + (2*t^5.497)/g1^8 + g1^40*t^5.514 + g1^18*t^5.631 + (2*t^5.749)/g1^4 + g1^22*t^5.883 - t^6. + g1^48*t^6.017 + g1^96*t^6.035 + t^6.117/g1^22 + t^6.234/g1^44 + 2*g1^4*t^6.251 + 2*g1^52*t^6.269 + t^6.369/g1^18 + g1^30*t^6.386 + g1^78*t^6.403 + 3*g1^8*t^6.503 + g1^56*t^6.52 + t^6.62/g1^14 + 2*g1^34*t^6.637 + t^6.737/g1^36 + 2*g1^12*t^6.754 + 2*g1^60*t^6.772 + t^6.871/g1^10 + g1^38*t^6.889 + t^6.988/g1^32 + 3*g1^16*t^7.006 + g1^64*t^7.023 + t^7.123/g1^6 + 3*g1^42*t^7.14 + 3*g1^20*t^7.257 + g1^68*t^7.274 + (2*t^7.374)/g1^2 + g1^46*t^7.392 + t^7.491/g1^24 + 3*g1^24*t^7.509 + g1^72*t^7.526 + t^7.608/g1^46 + g1^2*t^7.626 + g1^50*t^7.643 + (2*t^7.743)/g1^20 + 3*g1^28*t^7.76 + 2*g1^6*t^7.877 + g1^54*t^7.894 + t^7.994/g1^16 + g1^32*t^8.012 + g1^80*t^8.029 + g1^128*t^8.046 + g1^10*t^8.129 + 3*g1^36*t^8.263 + 2*g1^84*t^8.28 + t^8.363/g1^34 - g1^14*t^8.38 + g1^62*t^8.397 + g1^110*t^8.415 + t^8.48/g1^56 + 3*g1^40*t^8.514 + g1^88*t^8.532 + t^8.614/g1^30 + 2*g1^18*t^8.631 + 2*g1^66*t^8.649 + (3*t^8.749)/g1^4 + 3*g1^44*t^8.766 + 2*g1^92*t^8.783 + t^8.866/g1^26 + g1^22*t^8.883 + g1^70*t^8.9 + t^8.983/g1^48 - t^4.374/(g1^2*y) - (g1^30*t^6.386)/y - t^6.62/(g1^14*y) - (g1^12*t^6.754)/y + (2*g1^20*t^7.257)/y + (g1^46*t^7.392)/y - t^7.491/(g1^24*y) + (g1^24*t^7.509)/y + (g1^2*t^7.626)/y + t^7.743/(g1^20*y) + (g1^6*t^7.877)/y + t^7.994/(g1^16*y) + (g1^32*t^8.012)/y + (2*g1^10*t^8.129)/y + t^8.246/(g1^12*y) + (g1^36*t^8.263)/y + (2*t^8.363)/(g1^34*y) + (g1^14*t^8.38)/y - (g1^62*t^8.397)/y + (3*t^8.497)/(g1^8*y) + (g1^40*t^8.514)/y + t^8.614/(g1^30*y) + (2*t^8.749)/(g1^4*y) - (g1^44*t^8.766)/y - t^8.866/(g1^26*y) + (2*g1^22*t^8.883)/y - (t^4.374*y)/g1^2 - g1^30*t^6.386*y - (t^6.62*y)/g1^14 - g1^12*t^6.754*y + 2*g1^20*t^7.257*y + g1^46*t^7.392*y - (t^7.491*y)/g1^24 + g1^24*t^7.509*y + g1^2*t^7.626*y + (t^7.743*y)/g1^20 + g1^6*t^7.877*y + (t^7.994*y)/g1^16 + g1^32*t^8.012*y + 2*g1^10*t^8.129*y + (t^8.246*y)/g1^12 + g1^36*t^8.263*y + (2*t^8.363*y)/g1^34 + g1^14*t^8.38*y - g1^62*t^8.397*y + (3*t^8.497*y)/g1^8 + g1^40*t^8.514*y + (t^8.614*y)/g1^30 + (2*t^8.749*y)/g1^4 - g1^44*t^8.766*y - (t^8.866*y)/g1^26 + 2*g1^22*t^8.883*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55190 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ 0.671 0.8351 0.8035 [M:[1.1682, 1.0375, 0.8318, 0.7943, 1.0841, 0.7477], q:[0.3972, 0.4346], qb:[0.5654, 0.771], phi:[0.458]] t^2.243 + t^2.383 + t^2.495 + t^3. + t^3.112 + t^3.252 + t^3.505 + t^3.869 + t^3.982 + t^4.009 + t^4.261 + t^4.374 + t^4.486 + t^4.626 + t^4.739 + 2*t^4.766 + t^4.878 + t^4.991 + t^5.243 + t^5.356 + t^5.383 + 2*t^5.495 + t^5.635 + 2*t^5.748 - t^6. - t^4.374/y - t^4.374*y detail