Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56829 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_1M_4$ + $ M_5M_8$ | 0.7402 | 0.9337 | 0.7927 | [X:[], M:[0.9655, 0.8553, 0.9242, 1.0345, 1.0758, 0.8139, 0.6723, 0.9242], q:[0.4966, 0.5379], qb:[0.6482, 0.4276], phi:[0.4724]] | [X:[], M:[[4, 12], [0, 16], [-8, -8], [-4, -12], [8, 8], [-12, -4], [1, -17], [-8, -8]], q:[[-8, -16], [4, 4]], qb:[[8, 0], [0, 8]], phi:[[-1, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_6$, $ M_2$, $ M_3$, $ M_8$, $ \phi_1^2$, $ M_1$, $ M_4$, $ M_7^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1^2$, $ M_6M_7$, $ \phi_1q_1q_2$, $ M_2M_7$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3M_7$, $ M_7M_8$, $ M_7\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_6^2$, $ M_1M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_2M_6$, $ M_4M_7$, $ M_2^2$, $ M_3M_6$, $ M_6M_8$, $ M_6\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_2M_3$, $ M_1M_6$, $ M_2M_8$, $ M_2\phi_1^2$, $ M_1M_2$, $ M_3^2$, $ M_4M_6$, $ M_3M_8$, $ M_8^2$, $ M_3\phi_1^2$, $ M_8\phi_1^2$, $ M_1M_3$, $ M_2M_4$, $ M_1M_8$, $ \phi_1^4$, $ M_1\phi_1^2$, $ M_3M_4$, $ M_4M_8$, $ M_4\phi_1^2$ | . | -3 | t^2.02 + t^2.44 + t^2.57 + 2*t^2.77 + t^2.83 + t^2.9 + t^3.1 + t^4.03 + t^4.19 + t^4.31 + t^4.4 + t^4.46 + t^4.52 + t^4.58 + 2*t^4.64 + 2*t^4.79 + 2*t^4.85 + t^4.88 + t^4.91 + t^4.98 + t^5.01 + t^5.12 + t^5.13 + 2*t^5.21 + t^5.28 + t^5.31 + 2*t^5.34 + t^5.4 + t^5.46 + 3*t^5.55 + 2*t^5.61 + 2*t^5.67 + t^5.73 + t^5.88 + t^5.94 - 3*t^6. + t^6.05 - t^6.12 + t^6.21 - 2*t^6.33 + t^6.41 - t^6.45 + t^6.48 + t^6.54 + t^6.6 + t^6.63 + t^6.66 + t^6.76 + 2*t^6.81 + t^6.84 + 2*t^6.87 + t^6.88 + t^6.9 + t^6.93 + 3*t^6.96 + t^6.99 + 2*t^7.02 + 3*t^7.09 + t^7.14 + t^7.15 + 2*t^7.17 + 2*t^7.21 + 3*t^7.23 + 4*t^7.29 + t^7.32 + t^7.33 + 2*t^7.36 + 4*t^7.42 + t^7.45 + 2*t^7.48 + t^7.5 + t^7.54 + 2*t^7.56 + t^7.57 + 3*t^7.62 + 2*t^7.66 + 2*t^7.69 + t^7.7 + t^7.72 + 2*t^7.75 + 2*t^7.78 - t^7.81 + t^7.84 + t^7.89 + 2*t^7.9 + t^7.95 + t^7.97 + 3*t^7.99 - 4*t^8.02 + t^8.03 + 2*t^8.05 + t^8.07 + 3*t^8.11 - t^8.14 + 2*t^8.17 + t^8.22 + t^8.23 + t^8.3 + 3*t^8.32 - 2*t^8.35 + 3*t^8.38 + t^8.43 - t^8.44 - 2*t^8.47 + t^8.49 + 2*t^8.5 + t^8.55 - 4*t^8.57 + t^8.59 + t^8.62 + t^8.65 + t^8.68 - t^8.69 + 2*t^8.71 - 7*t^8.77 + t^8.79 + 2*t^8.82 - 2*t^8.83 + t^8.86 + 2*t^8.89 - 7*t^8.9 + 2*t^8.92 + t^8.95 + 2*t^8.98 - t^4.42/y - t^6.43/y - t^6.86/y - t^6.98/y - t^7.19/y - t^7.25/y + t^7.46/y + (2*t^7.58)/y + t^7.64/y + (2*t^7.79)/y + (2*t^7.85)/y + t^7.91/y + t^7.98/y + t^8.01/y + t^8.12/y + (2*t^8.21)/y + t^8.28/y + (3*t^8.34)/y + (2*t^8.4)/y - t^8.45/y + t^8.46/y + (2*t^8.55)/y + (2*t^8.61)/y + (3*t^8.67)/y + t^8.73/y + t^8.88/y + t^8.94/y - t^4.42*y - t^6.43*y - t^6.86*y - t^6.98*y - t^7.19*y - t^7.25*y + t^7.46*y + 2*t^7.58*y + t^7.64*y + 2*t^7.79*y + 2*t^7.85*y + t^7.91*y + t^7.98*y + t^8.01*y + t^8.12*y + 2*t^8.21*y + t^8.28*y + 3*t^8.34*y + 2*t^8.4*y - t^8.45*y + t^8.46*y + 2*t^8.55*y + 2*t^8.61*y + 3*t^8.67*y + t^8.73*y + t^8.88*y + t^8.94*y | (g1*t^2.02)/g2^17 + t^2.44/(g1^12*g2^4) + g2^16*t^2.57 + (2*t^2.77)/(g1^8*g2^8) + (g2^2*t^2.83)/g1^2 + g1^4*g2^12*t^2.9 + t^3.1/(g1^4*g2^12) + (g1^2*t^4.03)/g2^34 + t^4.19/(g1^9*g2^7) + g1^3*g2^13*t^4.31 + t^4.4/(g1^17*g2^31) + t^4.46/(g1^11*g2^21) + t^4.52/(g1^5*g2^11) + (g1*t^4.58)/g2 + 2*g1^7*g2^9*t^4.64 + (2*t^4.79)/(g1^7*g2^25) + (2*t^4.85)/(g1*g2^15) + t^4.88/(g1^24*g2^8) + (g1^5*t^4.91)/g2^5 + g1^11*g2^5*t^4.98 + (g2^12*t^5.01)/g1^12 + t^5.12/(g1^3*g2^29) + g2^32*t^5.13 + (2*t^5.21)/(g1^20*g2^12) + t^5.28/(g1^14*g2^2) + g1^15*g2*t^5.31 + (2*g2^8*t^5.34)/g1^8 + (g2^18*t^5.4)/g1^2 + g1^4*g2^28*t^5.46 + (3*t^5.55)/(g1^16*g2^16) + (2*t^5.61)/(g1^10*g2^6) + (2*g2^4*t^5.67)/g1^4 + g1^2*g2^14*t^5.73 + t^5.88/(g1^12*g2^20) + t^5.94/(g1^6*g2^10) - 3*t^6. + (g1^3*t^6.05)/g2^51 - g1^12*g2^20*t^6.12 + t^6.21/(g1^8*g2^24) - (2*g1^4*t^6.33)/g2^4 + t^6.41/(g1^16*g2^48) - g1^16*g2^16*t^6.45 + t^6.48/(g1^10*g2^38) + t^6.54/(g1^4*g2^28) + (g1^2*t^6.6)/g2^18 + t^6.63/(g1^21*g2^11) + (g1^8*t^6.66)/g2^8 + (g2^9*t^6.76)/g1^9 + (2*t^6.81)/(g1^6*g2^42) + t^6.84/(g1^29*g2^35) + (2*t^6.87)/g2^32 + g1^3*g2^29*t^6.88 + t^6.9/(g1^23*g2^25) + (g1^6*t^6.93)/g2^22 + (3*t^6.96)/(g1^17*g2^15) + (g1^12*t^6.99)/g2^12 + (2*t^7.02)/(g1^11*g2^5) + (3*g2^5*t^7.09)/g1^5 + t^7.14/(g1^2*g2^46) + g1*g2^15*t^7.15 + (2*t^7.17)/(g1^25*g2^39) + 2*g1^7*g2^25*t^7.21 + (3*t^7.23)/(g1^19*g2^29) + (4*t^7.29)/(g1^13*g2^19) + (g1^16*t^7.32)/g2^16 + t^7.33/(g1^36*g2^12) + (2*t^7.36)/(g1^7*g2^9) + (4*g2*t^7.42)/g1 + (g2^8*t^7.45)/g1^24 + 2*g1^5*g2^11*t^7.48 + t^7.5/(g1^21*g2^43) + g1^11*g2^21*t^7.54 + (2*t^7.56)/(g1^15*g2^33) + (g2^28*t^7.57)/g1^12 + (3*t^7.62)/(g1^9*g2^23) + (2*t^7.66)/(g1^32*g2^16) + (2*t^7.69)/(g1^3*g2^13) + g2^48*t^7.7 + t^7.72/(g1^26*g2^6) + (2*g1^3*t^7.75)/g2^3 + (2*g2^4*t^7.78)/g1^20 - g1^9*g2^7*t^7.81 + (g2^14*t^7.84)/g1^14 + t^7.89/(g1^11*g2^37) + (2*g2^24*t^7.9)/g1^8 + t^7.95/(g1^5*g2^27) + (g2^34*t^7.97)/g1^2 + (3*t^7.99)/(g1^28*g2^20) - (4*g1*t^8.02)/g2^17 + g1^4*g2^44*t^8.03 + (2*t^8.05)/(g1^22*g2^10) + (g1^4*t^8.07)/g2^68 + (3*t^8.11)/g1^16 - g1^13*g2^3*t^8.14 + (2*g2^10*t^8.17)/g1^10 + t^8.22/(g1^7*g2^41) + (g2^20*t^8.23)/g1^4 + g1^2*g2^30*t^8.3 + (3*t^8.32)/(g1^24*g2^24) - (2*g1^5*t^8.35)/g2^21 + (3*t^8.38)/(g1^18*g2^14) + t^8.43/(g1^15*g2^65) - t^8.44/(g1^12*g2^4) - (2*g1^17*t^8.47)/g2 + t^8.49/(g1^9*g2^55) + (2*g2^6*t^8.5)/g1^6 + t^8.55/(g1^3*g2^45) - 4*g2^16*t^8.57 + t^8.59/(g1^26*g2^38) + (g1^3*t^8.62)/g2^35 + t^8.65/(g1^20*g2^28) + (g1^9*t^8.68)/g2^25 - g1^12*g2^36*t^8.69 + (2*t^8.71)/(g1^14*g2^18) - (7*t^8.77)/(g1^8*g2^8) + t^8.79/(g1^34*g2^62) + (2*t^8.82)/(g1^5*g2^59) - (2*g2^2*t^8.83)/g1^2 + t^8.86/(g1^28*g2^52) + (2*g1*t^8.89)/g2^49 - 7*g1^4*g2^12*t^8.9 + (2*t^8.92)/(g1^22*g2^42) + (g1^7*t^8.95)/g2^39 + (2*t^8.98)/(g1^16*g2^32) - (g2*t^4.42)/(g1*y) - t^6.43/(g2^16*y) - t^6.86/(g1^13*g2^3*y) - (g2^17*t^6.98)/(g1*y) - t^7.19/(g1^9*g2^7*y) - (g2^3*t^7.25)/(g1^3*y) + t^7.46/(g1^11*g2^21*y) + (2*g1*t^7.58)/(g2*y) + (g1^7*g2^9*t^7.64)/y + (2*t^7.79)/(g1^7*g2^25*y) + (2*t^7.85)/(g1*g2^15*y) + (g1^5*t^7.91)/(g2^5*y) + (g1^11*g2^5*t^7.98)/y + (g2^12*t^8.01)/(g1^12*y) + t^8.12/(g1^3*g2^29*y) + (2*t^8.21)/(g1^20*g2^12*y) + t^8.28/(g1^14*g2^2*y) + (3*g2^8*t^8.34)/(g1^8*y) + (2*g2^18*t^8.4)/(g1^2*y) - (g1*t^8.45)/(g2^33*y) + (g1^4*g2^28*t^8.46)/y + (2*t^8.55)/(g1^16*g2^16*y) + (2*t^8.61)/(g1^10*g2^6*y) + (3*g2^4*t^8.67)/(g1^4*y) + (g1^2*g2^14*t^8.73)/y + t^8.88/(g1^12*g2^20*y) + t^8.94/(g1^6*g2^10*y) - (g2*t^4.42*y)/g1 - (t^6.43*y)/g2^16 - (t^6.86*y)/(g1^13*g2^3) - (g2^17*t^6.98*y)/g1 - (t^7.19*y)/(g1^9*g2^7) - (g2^3*t^7.25*y)/g1^3 + (t^7.46*y)/(g1^11*g2^21) + (2*g1*t^7.58*y)/g2 + g1^7*g2^9*t^7.64*y + (2*t^7.79*y)/(g1^7*g2^25) + (2*t^7.85*y)/(g1*g2^15) + (g1^5*t^7.91*y)/g2^5 + g1^11*g2^5*t^7.98*y + (g2^12*t^8.01*y)/g1^12 + (t^8.12*y)/(g1^3*g2^29) + (2*t^8.21*y)/(g1^20*g2^12) + (t^8.28*y)/(g1^14*g2^2) + (3*g2^8*t^8.34*y)/g1^8 + (2*g2^18*t^8.4*y)/g1^2 - (g1*t^8.45*y)/g2^33 + g1^4*g2^28*t^8.46*y + (2*t^8.55*y)/(g1^16*g2^16) + (2*t^8.61*y)/(g1^10*g2^6) + (3*g2^4*t^8.67*y)/g1^4 + g1^2*g2^14*t^8.73*y + (t^8.88*y)/(g1^12*g2^20) + (t^8.94*y)/(g1^6*g2^10) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55151 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_3M_5$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_1M_4$ | 0.7342 | 0.9219 | 0.7964 | [X:[], M:[0.9538, 0.8541, 0.9466, 1.0462, 1.0534, 0.847, 0.6708], q:[0.5195, 0.5267], qb:[0.6263, 0.4271], phi:[0.4751]] | t^2.01 + t^2.54 + t^2.56 + t^2.84 + t^2.85 + t^2.86 + t^3.14 + t^3.16 + t^4.02 + t^4.27 + t^4.29 + t^4.54 + t^4.55 + t^4.56 + t^4.57 + 2*t^4.59 + t^4.85 + 2*t^4.86 + t^4.87 + t^4.88 + t^5.08 + t^5.1 + t^5.12 + t^5.15 + t^5.17 + t^5.18 + t^5.38 + t^5.39 + t^5.4 + t^5.41 + t^5.42 + t^5.68 + t^5.69 + 2*t^5.7 + t^5.71 + t^5.72 + t^5.99 - 2*t^6. - t^4.43/y - t^4.43*y | detail |