Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56829 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}M_{8}$ 0.7402 0.9337 0.7927 [M:[0.9655, 0.8553, 0.9242, 1.0345, 1.0758, 0.8139, 0.6723, 0.9242], q:[0.4966, 0.5379], qb:[0.6482, 0.4276], phi:[0.4724]] [M:[[4, 12], [0, 16], [-8, -8], [-4, -12], [8, 8], [-12, -4], [1, -17], [-8, -8]], q:[[-8, -16], [4, 4]], qb:[[8, 0], [0, 8]], phi:[[-1, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{4}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{8}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{8}$, ${ }M_{4}\phi_{1}^{2}$ ${}$ -3 t^2.017 + t^2.442 + t^2.566 + 2*t^2.773 + t^2.835 + t^2.897 + t^3.103 + t^4.034 + t^4.19 + t^4.314 + t^4.397 + t^4.459 + t^4.521 + t^4.583 + 2*t^4.645 + 2*t^4.79 + 2*t^4.852 + t^4.883 + t^4.914 + t^4.976 + t^5.008 + t^5.12 + t^5.132 + 2*t^5.214 + t^5.276 + t^5.306 + 2*t^5.338 + t^5.4 + t^5.462 + 3*t^5.545 + 2*t^5.607 + 2*t^5.669 + t^5.731 + t^5.876 + t^5.938 - 3*t^6. + t^6.051 - t^6.124 + t^6.207 - 2*t^6.331 + t^6.414 - t^6.455 + t^6.476 + t^6.538 + t^6.6 + t^6.632 + t^6.662 + t^6.756 + 2*t^6.806 + t^6.838 + 2*t^6.868 + t^6.88 + t^6.9 + t^6.93 + 3*t^6.962 + t^6.992 + 2*t^7.024 + 3*t^7.086 + t^7.137 + t^7.148 + 2*t^7.169 + 2*t^7.21 + 3*t^7.231 + 4*t^7.293 + t^7.323 + t^7.325 + 2*t^7.355 + 4*t^7.417 + t^7.449 + 2*t^7.479 + t^7.5 + t^7.541 + 2*t^7.562 + t^7.573 + 3*t^7.624 + 2*t^7.656 + 2*t^7.686 + t^7.697 + t^7.718 + 2*t^7.748 + 2*t^7.78 - t^7.81 + t^7.842 + t^7.893 + 2*t^7.904 + t^7.955 + t^7.966 + 3*t^7.987 - 4*t^8.017 + t^8.028 + 2*t^8.049 + t^8.068 + 3*t^8.111 - t^8.141 + 2*t^8.173 + t^8.224 + t^8.235 + t^8.297 + 3*t^8.318 - 2*t^8.348 + 3*t^8.38 + t^8.431 - t^8.442 - 2*t^8.472 + t^8.493 + 2*t^8.504 + t^8.555 - 4*t^8.566 + t^8.587 + t^8.617 + t^8.649 + t^8.679 - t^8.69 + 2*t^8.711 - 7*t^8.773 + t^8.793 + 2*t^8.823 - 2*t^8.835 + t^8.855 + 2*t^8.885 - 7*t^8.897 + 2*t^8.917 + t^8.947 + 2*t^8.979 - t^4.417/y - t^6.434/y - t^6.859/y - t^6.983/y - t^7.19/y - t^7.252/y + t^7.459/y + (2*t^7.583)/y + t^7.645/y + (2*t^7.79)/y + (2*t^7.852)/y + t^7.914/y + t^7.976/y + t^8.008/y + t^8.12/y + (2*t^8.214)/y + t^8.276/y + (3*t^8.338)/y + (2*t^8.4)/y - t^8.451/y + t^8.462/y + (2*t^8.545)/y + (2*t^8.607)/y + (3*t^8.669)/y + t^8.731/y + t^8.876/y + t^8.938/y - t^4.417*y - t^6.434*y - t^6.859*y - t^6.983*y - t^7.19*y - t^7.252*y + t^7.459*y + 2*t^7.583*y + t^7.645*y + 2*t^7.79*y + 2*t^7.852*y + t^7.914*y + t^7.976*y + t^8.008*y + t^8.12*y + 2*t^8.214*y + t^8.276*y + 3*t^8.338*y + 2*t^8.4*y - t^8.451*y + t^8.462*y + 2*t^8.545*y + 2*t^8.607*y + 3*t^8.669*y + t^8.731*y + t^8.876*y + t^8.938*y (g1*t^2.017)/g2^17 + t^2.442/(g1^12*g2^4) + g2^16*t^2.566 + (2*t^2.773)/(g1^8*g2^8) + (g2^2*t^2.835)/g1^2 + g1^4*g2^12*t^2.897 + t^3.103/(g1^4*g2^12) + (g1^2*t^4.034)/g2^34 + t^4.19/(g1^9*g2^7) + g1^3*g2^13*t^4.314 + t^4.397/(g1^17*g2^31) + t^4.459/(g1^11*g2^21) + t^4.521/(g1^5*g2^11) + (g1*t^4.583)/g2 + 2*g1^7*g2^9*t^4.645 + (2*t^4.79)/(g1^7*g2^25) + (2*t^4.852)/(g1*g2^15) + t^4.883/(g1^24*g2^8) + (g1^5*t^4.914)/g2^5 + g1^11*g2^5*t^4.976 + (g2^12*t^5.008)/g1^12 + t^5.12/(g1^3*g2^29) + g2^32*t^5.132 + (2*t^5.214)/(g1^20*g2^12) + t^5.276/(g1^14*g2^2) + g1^15*g2*t^5.306 + (2*g2^8*t^5.338)/g1^8 + (g2^18*t^5.4)/g1^2 + g1^4*g2^28*t^5.462 + (3*t^5.545)/(g1^16*g2^16) + (2*t^5.607)/(g1^10*g2^6) + (2*g2^4*t^5.669)/g1^4 + g1^2*g2^14*t^5.731 + t^5.876/(g1^12*g2^20) + t^5.938/(g1^6*g2^10) - 3*t^6. + (g1^3*t^6.051)/g2^51 - g1^12*g2^20*t^6.124 + t^6.207/(g1^8*g2^24) - (2*g1^4*t^6.331)/g2^4 + t^6.414/(g1^16*g2^48) - g1^16*g2^16*t^6.455 + t^6.476/(g1^10*g2^38) + t^6.538/(g1^4*g2^28) + (g1^2*t^6.6)/g2^18 + t^6.632/(g1^21*g2^11) + (g1^8*t^6.662)/g2^8 + (g2^9*t^6.756)/g1^9 + (2*t^6.806)/(g1^6*g2^42) + t^6.838/(g1^29*g2^35) + (2*t^6.868)/g2^32 + g1^3*g2^29*t^6.88 + t^6.9/(g1^23*g2^25) + (g1^6*t^6.93)/g2^22 + (3*t^6.962)/(g1^17*g2^15) + (g1^12*t^6.992)/g2^12 + (2*t^7.024)/(g1^11*g2^5) + (3*g2^5*t^7.086)/g1^5 + t^7.137/(g1^2*g2^46) + g1*g2^15*t^7.148 + (2*t^7.169)/(g1^25*g2^39) + 2*g1^7*g2^25*t^7.21 + (3*t^7.231)/(g1^19*g2^29) + (4*t^7.293)/(g1^13*g2^19) + (g1^16*t^7.323)/g2^16 + t^7.325/(g1^36*g2^12) + (2*t^7.355)/(g1^7*g2^9) + (4*g2*t^7.417)/g1 + (g2^8*t^7.449)/g1^24 + 2*g1^5*g2^11*t^7.479 + t^7.5/(g1^21*g2^43) + g1^11*g2^21*t^7.541 + (2*t^7.562)/(g1^15*g2^33) + (g2^28*t^7.573)/g1^12 + (3*t^7.624)/(g1^9*g2^23) + (2*t^7.656)/(g1^32*g2^16) + (2*t^7.686)/(g1^3*g2^13) + g2^48*t^7.697 + t^7.718/(g1^26*g2^6) + (2*g1^3*t^7.748)/g2^3 + (2*g2^4*t^7.78)/g1^20 - g1^9*g2^7*t^7.81 + (g2^14*t^7.842)/g1^14 + t^7.893/(g1^11*g2^37) + (2*g2^24*t^7.904)/g1^8 + t^7.955/(g1^5*g2^27) + (g2^34*t^7.966)/g1^2 + (3*t^7.987)/(g1^28*g2^20) - (4*g1*t^8.017)/g2^17 + g1^4*g2^44*t^8.028 + (2*t^8.049)/(g1^22*g2^10) + (g1^4*t^8.068)/g2^68 + (3*t^8.111)/g1^16 - g1^13*g2^3*t^8.141 + (2*g2^10*t^8.173)/g1^10 + t^8.224/(g1^7*g2^41) + (g2^20*t^8.235)/g1^4 + g1^2*g2^30*t^8.297 + (3*t^8.318)/(g1^24*g2^24) - (2*g1^5*t^8.348)/g2^21 + (3*t^8.38)/(g1^18*g2^14) + t^8.431/(g1^15*g2^65) - t^8.442/(g1^12*g2^4) - (2*g1^17*t^8.472)/g2 + t^8.493/(g1^9*g2^55) + (2*g2^6*t^8.504)/g1^6 + t^8.555/(g1^3*g2^45) - 4*g2^16*t^8.566 + t^8.587/(g1^26*g2^38) + (g1^3*t^8.617)/g2^35 + t^8.649/(g1^20*g2^28) + (g1^9*t^8.679)/g2^25 - g1^12*g2^36*t^8.69 + (2*t^8.711)/(g1^14*g2^18) - (7*t^8.773)/(g1^8*g2^8) + t^8.793/(g1^34*g2^62) + (2*t^8.823)/(g1^5*g2^59) - (2*g2^2*t^8.835)/g1^2 + t^8.855/(g1^28*g2^52) + (2*g1*t^8.885)/g2^49 - 7*g1^4*g2^12*t^8.897 + (2*t^8.917)/(g1^22*g2^42) + (g1^7*t^8.947)/g2^39 + (2*t^8.979)/(g1^16*g2^32) - (g2*t^4.417)/(g1*y) - t^6.434/(g2^16*y) - t^6.859/(g1^13*g2^3*y) - (g2^17*t^6.983)/(g1*y) - t^7.19/(g1^9*g2^7*y) - (g2^3*t^7.252)/(g1^3*y) + t^7.459/(g1^11*g2^21*y) + (2*g1*t^7.583)/(g2*y) + (g1^7*g2^9*t^7.645)/y + (2*t^7.79)/(g1^7*g2^25*y) + (2*t^7.852)/(g1*g2^15*y) + (g1^5*t^7.914)/(g2^5*y) + (g1^11*g2^5*t^7.976)/y + (g2^12*t^8.008)/(g1^12*y) + t^8.12/(g1^3*g2^29*y) + (2*t^8.214)/(g1^20*g2^12*y) + t^8.276/(g1^14*g2^2*y) + (3*g2^8*t^8.338)/(g1^8*y) + (2*g2^18*t^8.4)/(g1^2*y) - (g1*t^8.451)/(g2^33*y) + (g1^4*g2^28*t^8.462)/y + (2*t^8.545)/(g1^16*g2^16*y) + (2*t^8.607)/(g1^10*g2^6*y) + (3*g2^4*t^8.669)/(g1^4*y) + (g1^2*g2^14*t^8.731)/y + t^8.876/(g1^12*g2^20*y) + t^8.938/(g1^6*g2^10*y) - (g2*t^4.417*y)/g1 - (t^6.434*y)/g2^16 - (t^6.859*y)/(g1^13*g2^3) - (g2^17*t^6.983*y)/g1 - (t^7.19*y)/(g1^9*g2^7) - (g2^3*t^7.252*y)/g1^3 + (t^7.459*y)/(g1^11*g2^21) + (2*g1*t^7.583*y)/g2 + g1^7*g2^9*t^7.645*y + (2*t^7.79*y)/(g1^7*g2^25) + (2*t^7.852*y)/(g1*g2^15) + (g1^5*t^7.914*y)/g2^5 + g1^11*g2^5*t^7.976*y + (g2^12*t^8.008*y)/g1^12 + (t^8.12*y)/(g1^3*g2^29) + (2*t^8.214*y)/(g1^20*g2^12) + (t^8.276*y)/(g1^14*g2^2) + (3*g2^8*t^8.338*y)/g1^8 + (2*g2^18*t^8.4*y)/g1^2 - (g1*t^8.451*y)/g2^33 + g1^4*g2^28*t^8.462*y + (2*t^8.545*y)/(g1^16*g2^16) + (2*t^8.607*y)/(g1^10*g2^6) + (3*g2^4*t^8.669*y)/g1^4 + g1^2*g2^14*t^8.731*y + (t^8.876*y)/(g1^12*g2^20) + (t^8.938*y)/(g1^6*g2^10)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55151 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{4}$ 0.7342 0.9219 0.7964 [M:[0.9538, 0.8541, 0.9466, 1.0462, 1.0534, 0.847, 0.6708], q:[0.5195, 0.5267], qb:[0.6263, 0.4271], phi:[0.4751]] t^2.012 + t^2.541 + t^2.562 + t^2.84 + t^2.851 + t^2.861 + t^3.139 + t^3.16 + t^4.025 + t^4.265 + t^4.287 + t^4.543 + t^4.553 + t^4.564 + t^4.575 + 2*t^4.585 + t^4.852 + 2*t^4.863 + t^4.874 + t^4.884 + t^5.082 + t^5.103 + t^5.125 + t^5.151 + t^5.173 + t^5.183 + t^5.381 + t^5.391 + t^5.402 + t^5.413 + t^5.424 + t^5.68 + t^5.69 + 2*t^5.701 + t^5.712 + t^5.723 + t^5.989 - 2*t^6. - t^4.425/y - t^4.425*y detail