Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56813 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_6\phi_1^2$ + $ M_4M_5$ + $ M_6M_7$ + $ M_4M_8$ | 0.7115 | 0.8828 | 0.806 | [X:[], M:[0.96, 0.8397, 0.9759, 1.0962, 0.9038, 1.0321, 0.9679, 0.9038], q:[0.6162, 0.4238], qb:[0.5441, 0.48], phi:[0.484]] | [X:[], M:[[0, 8], [-10, 10], [-4, -4], [6, -6], [-6, 6], [2, -2], [-2, 2], [-6, 6]], q:[[6, -10], [-6, 2]], qb:[[4, 0], [0, 4]], phi:[[-1, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_5$, $ M_8$, $ M_1$, $ M_7$, $ \phi_1^2$, $ M_3$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2^2$, $ \phi_1q_1^2$, $ M_2M_5$, $ M_2M_8$, $ M_1M_2$, $ M_5^2$, $ M_2M_7$, $ M_5M_8$, $ M_8^2$, $ M_2\phi_1^2$, $ M_2M_3$, $ M_1M_5$, $ M_1M_8$, $ M_5M_7$, $ M_7M_8$, $ M_5\phi_1^2$, $ M_8\phi_1^2$, $ M_3M_5$, $ M_3M_8$, $ M_1^2$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_1M_3$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ M_3M_7$, $ M_3\phi_1^2$, $ M_3^2$ | . | -4 | t^2.52 + 2*t^2.71 + t^2.88 + 2*t^2.9 + t^2.93 + t^3.99 + t^4.16 + t^4.33 + t^4.36 + t^4.52 + t^4.57 + t^4.72 + t^4.74 + t^4.93 + t^5.04 + t^5.15 + 2*t^5.23 + t^5.4 + 4*t^5.42 + t^5.45 + t^5.59 + 4*t^5.62 + t^5.64 + t^5.76 + t^5.78 + 3*t^5.81 + t^5.83 + t^5.86 - 4*t^6. - t^6.17 - 2*t^6.19 - t^6.22 - t^6.36 - t^6.41 + t^6.51 - t^6.58 + t^6.68 + 2*t^6.71 + t^6.85 + 3*t^6.87 + 2*t^6.9 + t^6.92 + 3*t^7.04 + 3*t^7.07 + t^7.21 + 4*t^7.24 + 2*t^7.26 + t^7.28 + t^7.4 + 2*t^7.43 + t^7.48 + t^7.5 + t^7.56 + t^7.6 + t^7.62 + t^7.64 + 2*t^7.75 - 2*t^7.81 + t^7.86 + t^7.92 + 4*t^7.94 + t^7.97 + t^7.99 - t^8.01 - t^8.03 + t^8.05 + t^8.08 + t^8.11 + 6*t^8.13 + 2*t^8.16 - t^8.22 - t^8.25 + t^8.28 + 2*t^8.3 + 8*t^8.33 + 2*t^8.35 + t^8.37 + t^8.47 + 2*t^8.5 + 2*t^8.52 + 2*t^8.57 + t^8.64 + 2*t^8.66 + t^8.69 - 5*t^8.71 + 2*t^8.74 + t^8.76 + t^8.78 + t^8.86 - 5*t^8.88 - 10*t^8.9 - 4*t^8.93 - t^4.45/y - t^6.97/y - t^7.16/y - t^7.33/y - t^7.36/y - t^7.38/y + t^7.52/y + t^7.55/y + t^7.57/y + t^7.74/y + t^7.93/y + (2*t^8.23)/y + t^8.4/y + (3*t^8.42)/y + t^8.45/y + (2*t^8.59)/y + (4*t^8.62)/y + (2*t^8.64)/y + (2*t^8.78)/y + (2*t^8.81)/y + (2*t^8.83)/y - t^4.45*y - t^6.97*y - t^7.16*y - t^7.33*y - t^7.36*y - t^7.38*y + t^7.52*y + t^7.55*y + t^7.57*y + t^7.74*y + t^7.93*y + 2*t^8.23*y + t^8.4*y + 3*t^8.42*y + t^8.45*y + 2*t^8.59*y + 4*t^8.62*y + 2*t^8.64*y + 2*t^8.78*y + 2*t^8.81*y + 2*t^8.83*y | (g2^10*t^2.52)/g1^10 + (2*g2^6*t^2.71)/g1^6 + g2^8*t^2.88 + (2*g2^2*t^2.9)/g1^2 + t^2.93/(g1^4*g2^4) + (g2^5*t^3.99)/g1^13 + (g2^7*t^4.16)/g1^7 + (g2^9*t^4.33)/g1 + (g2^3*t^4.36)/g1^3 + g1^3*g2^5*t^4.52 + t^4.57/(g1*g2^7) + g1^7*g2*t^4.72 + (g1^5*t^4.74)/g2^5 + (g1^9*t^4.93)/g2^9 + (g2^20*t^5.04)/g1^20 + (g1^11*t^5.15)/g2^19 + (2*g2^16*t^5.23)/g1^16 + (g2^18*t^5.4)/g1^10 + (4*g2^12*t^5.42)/g1^12 + (g2^6*t^5.45)/g1^14 + (g2^14*t^5.59)/g1^6 + (4*g2^8*t^5.62)/g1^8 + (g2^2*t^5.64)/g1^10 + g2^16*t^5.76 + (g2^10*t^5.78)/g1^2 + (3*g2^4*t^5.81)/g1^4 + t^5.83/(g1^6*g2^2) + t^5.86/(g1^8*g2^8) - 4*t^6. - g1^6*g2^2*t^6.17 - (2*g1^4*t^6.19)/g2^4 - (g1^2*t^6.22)/g2^10 - (g1^10*t^6.36)/g2^2 - (g1^6*t^6.41)/g2^14 + (g2^15*t^6.51)/g1^23 - (g1^12*t^6.58)/g2^12 + (g2^17*t^6.68)/g1^17 + (2*g2^11*t^6.71)/g1^19 + (g2^19*t^6.85)/g1^11 + (3*g2^13*t^6.87)/g1^13 + (2*g2^7*t^6.9)/g1^15 + (g2*t^6.92)/g1^17 + (3*g2^15*t^7.04)/g1^7 + (3*g2^9*t^7.07)/g1^9 + (g2^17*t^7.21)/g1 + (4*g2^11*t^7.24)/g1^3 + (2*g2^5*t^7.26)/g1^5 + t^7.28/(g1^7*g2) + g1^3*g2^13*t^7.4 + 2*g1*g2^7*t^7.43 + t^7.48/(g1^3*g2^5) + t^7.5/(g1^5*g2^11) + (g2^30*t^7.56)/g1^30 + g1^7*g2^9*t^7.6 + g1^5*g2^3*t^7.62 + (g1^3*t^7.64)/g2^3 + (2*g2^26*t^7.75)/g1^26 - (2*g1^9*t^7.81)/g2 + (g1^5*t^7.86)/g2^13 + (g2^28*t^7.92)/g1^20 + (4*g2^22*t^7.94)/g1^22 + (g2^16*t^7.97)/g1^24 + (g2^10*t^7.99)/g1^26 - (g1^13*t^8.01)/g2^5 - (g1^11*t^8.03)/g2^11 + (g1^9*t^8.05)/g2^17 + (g1^7*t^8.08)/g2^23 + (g2^24*t^8.11)/g1^16 + (6*g2^18*t^8.13)/g1^18 + (2*g2^12*t^8.16)/g1^20 - (g1^15*t^8.22)/g2^15 - (g1^13*t^8.25)/g2^21 + (g2^26*t^8.28)/g1^10 + (2*g2^20*t^8.3)/g1^12 + (8*g2^14*t^8.33)/g1^14 + (2*g2^8*t^8.35)/g1^16 + (g2^2*t^8.37)/g1^18 + (g2^22*t^8.47)/g1^6 + (2*g2^16*t^8.5)/g1^8 + (2*g2^10*t^8.52)/g1^10 + (2*t^8.57)/(g1^14*g2^2) + g2^24*t^8.64 + (2*g2^18*t^8.66)/g1^2 + (g2^12*t^8.69)/g1^4 - (5*g2^6*t^8.71)/g1^6 + (2*t^8.74)/g1^8 + t^8.76/(g1^10*g2^6) + t^8.78/(g1^12*g2^12) + g1^2*g2^14*t^8.86 - 5*g2^8*t^8.88 - (10*g2^2*t^8.9)/g1^2 - (4*t^8.93)/(g1^4*g2^4) - (g2*t^4.45)/(g1*y) - (g2^11*t^6.97)/(g1^11*y) - (g2^7*t^7.16)/(g1^7*y) - (g2^9*t^7.33)/(g1*y) - (g2^3*t^7.36)/(g1^3*y) - t^7.38/(g1^5*g2^3*y) + (g1^3*g2^5*t^7.52)/y + (g1*t^7.55)/(g2*y) + t^7.57/(g1*g2^7*y) + (g1^5*t^7.74)/(g2^5*y) + (g1^9*t^7.93)/(g2^9*y) + (2*g2^16*t^8.23)/(g1^16*y) + (g2^18*t^8.4)/(g1^10*y) + (3*g2^12*t^8.42)/(g1^12*y) + (g2^6*t^8.45)/(g1^14*y) + (2*g2^14*t^8.59)/(g1^6*y) + (4*g2^8*t^8.62)/(g1^8*y) + (2*g2^2*t^8.64)/(g1^10*y) + (2*g2^10*t^8.78)/(g1^2*y) + (2*g2^4*t^8.81)/(g1^4*y) + (2*t^8.83)/(g1^6*g2^2*y) - (g2*t^4.45*y)/g1 - (g2^11*t^6.97*y)/g1^11 - (g2^7*t^7.16*y)/g1^7 - (g2^9*t^7.33*y)/g1 - (g2^3*t^7.36*y)/g1^3 - (t^7.38*y)/(g1^5*g2^3) + g1^3*g2^5*t^7.52*y + (g1*t^7.55*y)/g2 + (t^7.57*y)/(g1*g2^7) + (g1^5*t^7.74*y)/g2^5 + (g1^9*t^7.93*y)/g2^9 + (2*g2^16*t^8.23*y)/g1^16 + (g2^18*t^8.4*y)/g1^10 + (3*g2^12*t^8.42*y)/g1^12 + (g2^6*t^8.45*y)/g1^14 + (2*g2^14*t^8.59*y)/g1^6 + (4*g2^8*t^8.62*y)/g1^8 + (2*g2^2*t^8.64*y)/g1^10 + (2*g2^10*t^8.78*y)/g1^2 + (2*g2^4*t^8.81*y)/g1^4 + (2*t^8.83*y)/(g1^6*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55145 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_6\phi_1^2$ + $ M_4M_5$ + $ M_6M_7$ | 0.7036 | 0.867 | 0.8115 | [X:[], M:[0.9696, 0.873, 0.9796, 1.0762, 0.9238, 1.0254, 0.9746], q:[0.5914, 0.439], qb:[0.5356, 0.4848], phi:[0.4873]] | t^2.62 + t^2.77 + t^2.91 + 2*t^2.92 + t^2.94 + t^3.23 + t^4.1 + t^4.23 + t^4.37 + t^4.39 + t^4.52 + t^4.55 + t^4.68 + t^4.69 + t^4.84 + t^5.01 + t^5.24 + t^5.39 + t^5.53 + 2*t^5.54 + t^5.56 + 2*t^5.7 + t^5.82 + t^5.83 + 4*t^5.85 + t^5.86 + t^5.88 - 3*t^6. - t^4.46/y - t^4.46*y | detail |