Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56810 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ q_1q_2\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4\phi_1q_2^2$ + $ M_2M_5$ + $ M_6\phi_1q_2\tilde{q}_1$ + $ M_1M_7$ 0.6429 0.8517 0.7548 [X:[], M:[0.9594, 0.9594, 0.6826, 0.8782, 1.0406, 0.6993, 1.0406], q:[0.7399, 0.3007], qb:[0.4797, 0.3985], phi:[0.5203]] [X:[], M:[[4], [4], [-18], [12], [-4], [5], [-4]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_6$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ M_5$, $ M_7$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_3^2$, $ M_3M_6$, $ M_3q_2\tilde{q}_2$, $ M_6^2$, $ M_6q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3M_4$, $ \phi_1q_1q_2$, $ q_2^2\tilde{q}_1^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4M_6$, $ M_4q_2\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_3M_5$, $ M_3M_7$, $ M_5M_6$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_4^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_1$, $ M_4M_5$, $ M_4M_7$, $ M_6q_1\tilde{q}_1$, $ M_6\phi_1q_2\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ . -2 t^2.05 + 2*t^2.1 + t^2.34 + 2*t^2.63 + 2*t^3.12 + t^3.42 + 2*t^3.66 + t^4.1 + 2*t^4.15 + 4*t^4.2 + t^4.39 + 3*t^4.44 + 3*t^4.68 + 4*t^4.73 + 2*t^4.98 + 2*t^5.17 + 4*t^5.22 + 3*t^5.27 + 2*t^5.46 + 2*t^5.51 + t^5.71 + 7*t^5.76 - 2*t^6. + 2*t^6.05 + t^6.14 + 2*t^6.19 + 4*t^6.24 + 8*t^6.29 + t^6.44 + 3*t^6.49 + 4*t^6.54 + 3*t^6.73 + 7*t^6.78 + 8*t^6.83 + 6*t^7.07 + 2*t^7.22 + 3*t^7.27 + 10*t^7.32 + 6*t^7.37 + 2*t^7.51 + t^7.56 + 6*t^7.61 + t^7.75 + 4*t^7.8 + 11*t^7.85 + 4*t^7.9 - 3*t^8.05 - 2*t^8.1 + 4*t^8.15 + t^8.19 + 2*t^8.24 + 4*t^8.29 + 4*t^8.34 + 16*t^8.39 + t^8.49 + 3*t^8.53 + 2*t^8.58 + 3*t^8.68 + 3*t^8.78 + 5*t^8.83 + 10*t^8.88 + 14*t^8.93 - t^4.56/y - t^6.61/y - t^6.66/y + (2*t^7.15)/y + t^7.39/y + (3*t^7.44)/y + t^7.68/y + (4*t^7.73)/y + t^7.93/y + (2*t^7.98)/y + (2*t^8.17)/y + (4*t^8.22)/y + t^8.27/y + (4*t^8.46)/y + (3*t^8.51)/y - t^8.66/y + t^8.71/y + (8*t^8.76)/y - t^4.56*y - t^6.61*y - t^6.66*y + 2*t^7.15*y + t^7.39*y + 3*t^7.44*y + t^7.68*y + 4*t^7.73*y + t^7.93*y + 2*t^7.98*y + 2*t^8.17*y + 4*t^8.22*y + t^8.27*y + 4*t^8.46*y + 3*t^8.51*y - t^8.66*y + t^8.71*y + 8*t^8.76*y t^2.05/g1^18 + 2*g1^5*t^2.1 + t^2.34/g1^3 + 2*g1^12*t^2.63 + (2*t^3.12)/g1^4 + g1^11*t^3.42 + 2*g1^3*t^3.66 + t^4.1/g1^36 + (2*t^4.15)/g1^13 + 4*g1^10*t^4.2 + t^4.39/g1^21 + 3*g1^2*t^4.44 + (3*t^4.68)/g1^6 + 4*g1^17*t^4.73 + 2*g1^9*t^4.98 + (2*t^5.17)/g1^22 + 4*g1*t^5.22 + 3*g1^24*t^5.27 + (2*t^5.46)/g1^7 + 2*g1^16*t^5.51 + t^5.71/g1^15 + 7*g1^8*t^5.76 - 2*t^6. + 2*g1^23*t^6.05 + t^6.14/g1^54 + (2*t^6.19)/g1^31 + (4*t^6.24)/g1^8 + 8*g1^15*t^6.29 + t^6.44/g1^39 + (3*t^6.49)/g1^16 + 4*g1^7*t^6.54 + (3*t^6.73)/g1^24 + (7*t^6.78)/g1 + 8*g1^22*t^6.83 + 6*g1^14*t^7.07 + (2*t^7.22)/g1^40 + (3*t^7.27)/g1^17 + 10*g1^6*t^7.32 + 6*g1^29*t^7.37 + (2*t^7.51)/g1^25 + t^7.56/g1^2 + 6*g1^21*t^7.61 + t^7.75/g1^33 + (4*t^7.8)/g1^10 + 11*g1^13*t^7.85 + 4*g1^36*t^7.9 - (3*t^8.05)/g1^18 - 2*g1^5*t^8.1 + 4*g1^28*t^8.15 + t^8.19/g1^72 + (2*t^8.24)/g1^49 + (4*t^8.29)/g1^26 + (4*t^8.34)/g1^3 + 16*g1^20*t^8.39 + t^8.49/g1^57 + (3*t^8.53)/g1^34 + (2*t^8.58)/g1^11 + 3*g1^35*t^8.68 + (3*t^8.78)/g1^42 + (5*t^8.83)/g1^19 + 10*g1^4*t^8.88 + 14*g1^27*t^8.93 - t^4.56/(g1^2*y) - t^6.61/(g1^20*y) - (g1^3*t^6.66)/y + (2*t^7.15)/(g1^13*y) + t^7.39/(g1^21*y) + (3*g1^2*t^7.44)/y + t^7.68/(g1^6*y) + (4*g1^17*t^7.73)/y + t^7.93/(g1^14*y) + (2*g1^9*t^7.98)/y + (2*t^8.17)/(g1^22*y) + (4*g1*t^8.22)/y + (g1^24*t^8.27)/y + (4*t^8.46)/(g1^7*y) + (3*g1^16*t^8.51)/y - t^8.66/(g1^38*y) + t^8.71/(g1^15*y) + (8*g1^8*t^8.76)/y - (t^4.56*y)/g1^2 - (t^6.61*y)/g1^20 - g1^3*t^6.66*y + (2*t^7.15*y)/g1^13 + (t^7.39*y)/g1^21 + 3*g1^2*t^7.44*y + (t^7.68*y)/g1^6 + 4*g1^17*t^7.73*y + (t^7.93*y)/g1^14 + 2*g1^9*t^7.98*y + (2*t^8.17*y)/g1^22 + 4*g1*t^8.22*y + g1^24*t^8.27*y + (4*t^8.46*y)/g1^7 + 3*g1^16*t^8.51*y - (t^8.66*y)/g1^38 + (t^8.71*y)/g1^15 + 8*g1^8*t^8.76*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55127 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ q_1q_2\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4\phi_1q_2^2$ + $ M_2M_5$ + $ M_6\phi_1q_2\tilde{q}_1$ 0.6468 0.8588 0.7532 [X:[], M:[0.9564, 0.9564, 0.6961, 0.8693, 1.0436, 0.6955], q:[0.7391, 0.3045], qb:[0.4782, 0.3911], phi:[0.5218]] 3*t^2.09 + t^2.35 + 2*t^2.61 + t^2.87 + t^3.13 + t^3.39 + 2*t^3.65 + 6*t^4.17 + t^4.18 + 3*t^4.43 + t^4.44 + 4*t^4.69 + 3*t^4.7 + 5*t^4.96 + 7*t^5.22 + 5*t^5.48 + 7*t^5.74 + t^6. - t^4.57/y - t^4.57*y detail