Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56801 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5\phi_1^2$ + $ M_3M_6$ + $ M_7q_2\tilde{q}_1$ + $ M_8\phi_1\tilde{q}_2^2$ | 0.6493 | 0.8094 | 0.8023 | [X:[1.6099], M:[0.3901, 0.7309, 1.1704, 0.8296, 1.2197, 0.8296, 0.8049, 0.8049], q:[0.842, 0.7679], qb:[0.4272, 0.4025], phi:[0.3901]] | [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [0, 2], [0, 3], [2, 0], [-2, 1]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_7$, $ M_8$, $ M_4$, $ M_6$, $ M_5$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_2M_7$, $ M_2M_8$, $ M_2M_4$, $ M_2M_6$, $ \phi_1q_2\tilde{q}_2$, $ M_7^2$, $ M_7M_8$, $ X_1$, $ M_8^2$, $ M_4M_7$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_8$, $ M_6M_8$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_5$, $ M_2\phi_1\tilde{q}_1\tilde{q}_2$ | . | -3 | t^2.19 + 2*t^2.41 + 2*t^2.49 + 2*t^3.66 + 2*t^3.73 + t^4.39 + 2*t^4.61 + 2*t^4.68 + 4*t^4.83 + 4*t^4.9 + 3*t^4.98 + t^5.85 - 3*t^6. + 2*t^6.07 + 7*t^6.15 + 4*t^6.22 + t^6.58 + 2*t^6.8 + 2*t^6.87 + 3*t^7.02 + 2*t^7.1 + 2*t^7.24 + 7*t^7.32 + 8*t^7.39 + 6*t^7.47 + t^8.04 - 3*t^8.19 + t^8.34 - 8*t^8.41 - 4*t^8.49 + 8*t^8.56 + 11*t^8.64 + 6*t^8.71 + t^8.77 + 2*t^8.99 - t^4.17/y - t^6.36/y - (2*t^6.59)/y - t^6.66/y + (2*t^7.61)/y + (3*t^7.68)/y + (2*t^7.76)/y + t^7.83/y + (4*t^7.9)/y + (2*t^7.98)/y - t^8.56/y - (2*t^8.78)/y + t^8.85/y + (2*t^8.93)/y - t^4.17*y - t^6.36*y - 2*t^6.59*y - t^6.66*y + 2*t^7.61*y + 3*t^7.68*y + 2*t^7.76*y + t^7.83*y + 4*t^7.9*y + 2*t^7.98*y - t^8.56*y - 2*t^8.78*y + t^8.85*y + 2*t^8.93*y | t^2.19/g2^7 + g1^2*t^2.41 + (g2*t^2.41)/g1^2 + 2*g2^3*t^2.49 + 2*g2^2*t^3.66 + g1^2*g2^4*t^3.73 + (g2^5*t^3.73)/g1^2 + t^4.39/g2^14 + (g1^2*t^4.61)/g2^7 + t^4.61/(g1^2*g2^6) + (2*t^4.68)/g2^4 + g1^4*t^4.83 + 2*g2*t^4.83 + (g2^2*t^4.83)/g1^4 + 2*g1^2*g2^3*t^4.9 + (2*g2^4*t^4.9)/g1^2 + 3*g2^6*t^4.98 + t^5.85/g2^5 - 3*t^6. + g1^2*g2^2*t^6.07 + (g2^3*t^6.07)/g1^2 + g1^4*g2^4*t^6.15 + 5*g2^5*t^6.15 + (g2^6*t^6.15)/g1^4 + 2*g1^2*g2^7*t^6.22 + (2*g2^8*t^6.22)/g1^2 + t^6.58/g2^21 + (g1^2*t^6.8)/g2^14 + t^6.8/(g1^2*g2^13) + (2*t^6.87)/g2^11 + (g1^4*t^7.02)/g2^7 + t^7.02/g2^6 + t^7.02/(g1^4*g2^5) + (g1^2*t^7.1)/g2^4 + t^7.1/(g1^2*g2^3) + g1^6*t^7.24 + (g2^3*t^7.24)/g1^6 + 2*g1^4*g2^3*t^7.32 + 3*g2^4*t^7.32 + (2*g2^5*t^7.32)/g1^4 + 4*g1^2*g2^6*t^7.39 + (4*g2^7*t^7.39)/g1^2 + g1^4*g2^8*t^7.47 + 4*g2^9*t^7.47 + (g2^10*t^7.47)/g1^4 + t^8.04/g2^12 - (3*t^8.19)/g2^7 + t^8.34/g2^2 - 4*g1^2*t^8.41 - (4*g2*t^8.41)/g1^2 + g1^4*g2^2*t^8.49 - 6*g2^3*t^8.49 + (g2^4*t^8.49)/g1^4 + g1^6*g2^4*t^8.56 + 3*g1^2*g2^5*t^8.56 + (3*g2^6*t^8.56)/g1^2 + (g2^7*t^8.56)/g1^6 + 2*g1^4*g2^7*t^8.64 + 7*g2^8*t^8.64 + (2*g2^9*t^8.64)/g1^4 + 3*g1^2*g2^10*t^8.71 + (3*g2^11*t^8.71)/g1^2 + t^8.77/g2^28 + (g1^2*t^8.99)/g2^21 + t^8.99/(g1^2*g2^20) - t^4.17/(g2*y) - t^6.36/(g2^8*y) - t^6.59/(g1^2*y) - (g1^2*t^6.59)/(g2*y) - (g2^2*t^6.66)/y + (g1^2*t^7.61)/(g2^7*y) + t^7.61/(g1^2*g2^6*y) + (3*t^7.68)/(g2^4*y) + (g1^2*t^7.76)/(g2^2*y) + t^7.76/(g1^2*g2*y) + (g2*t^7.83)/y + (2*g1^2*g2^3*t^7.9)/y + (2*g2^4*t^7.9)/(g1^2*y) + (2*g2^6*t^7.98)/y - t^8.56/(g2^15*y) - (g1^2*t^8.78)/(g2^8*y) - t^8.78/(g1^2*g2^7*y) + t^8.85/(g2^5*y) + (g1^2*t^8.93)/(g2^3*y) + t^8.93/(g1^2*g2^2*y) - (t^4.17*y)/g2 - (t^6.36*y)/g2^8 - (t^6.59*y)/g1^2 - (g1^2*t^6.59*y)/g2 - g2^2*t^6.66*y + (g1^2*t^7.61*y)/g2^7 + (t^7.61*y)/(g1^2*g2^6) + (3*t^7.68*y)/g2^4 + (g1^2*t^7.76*y)/g2^2 + (t^7.76*y)/(g1^2*g2) + g2*t^7.83*y + 2*g1^2*g2^3*t^7.9*y + (2*g2^4*t^7.9*y)/g1^2 + 2*g2^6*t^7.98*y - (t^8.56*y)/g2^15 - (g1^2*t^8.78*y)/g2^8 - (t^8.78*y)/(g1^2*g2^7) + (t^8.85*y)/g2^5 + (g1^2*t^8.93*y)/g2^3 + (t^8.93*y)/(g1^2*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55142 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5\phi_1^2$ + $ M_3M_6$ + $ M_7q_2\tilde{q}_1$ | 0.6343 | 0.7843 | 0.8087 | [X:[1.6105], M:[0.3895, 0.7262, 1.1684, 0.8316, 1.2211, 0.8316, 0.7684], q:[0.8264, 0.7842], qb:[0.4474, 0.3842], phi:[0.3895]] | t^2.18 + t^2.31 + 2*t^2.49 + t^3.47 + t^3.63 + 2*t^3.66 + t^3.85 + t^4.36 + t^4.48 + t^4.61 + 2*t^4.67 + 2*t^4.8 + t^4.83 + 3*t^4.99 + t^5.65 + t^5.78 + t^5.84 + t^5.94 + 3*t^5.97 - 3*t^6. - t^4.17/y - t^4.17*y | detail |