Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56798 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{1}M_{7}$ 0.6736 0.8382 0.8036 [M:[1.1832, 0.9849, 0.8168, 0.8168, 0.7328, 1.2672, 0.8168], q:[0.4084, 0.4084], qb:[0.6067, 0.7748], phi:[0.4504]] [M:[[2], [-22], [-2], [-2], [8], [-8], [-2]], q:[[-1], [-1]], qb:[[23], [3]], phi:[[-6]]] 1 {a: 21580571/32039472, c: 13427153/16019736, M1: 2900/2451, M2: 2414/2451, M3: 2002/2451, M4: 2002/2451, M5: 1796/2451, M6: 3106/2451, M7: 2002/2451, q1: 1001/2451, q2: 1001/2451, qb1: 1487/2451, qb2: 633/817, phi1: 368/817}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$ ${}M_{2}q_{2}\tilde{q}_{1}$ -4 3*t^2.45 + t^2.703 + t^2.955 + t^3.045 + 3*t^3.802 + t^4.144 + 2*t^4.397 + 6*t^4.901 + t^4.991 + 3*t^5.153 + 2*t^5.405 + 3*t^5.496 + t^5.657 + t^5.748 + t^5.909 - 4*t^6. + t^6.091 + 7*t^6.252 + 2*t^6.504 + t^6.756 + 7*t^6.847 - 2*t^7.099 + t^7.19 + 6*t^7.351 + 4*t^7.442 + 11*t^7.603 - t^7.694 + 3*t^7.856 + 4*t^7.946 + t^8.037 + 2*t^8.108 + 5*t^8.198 + 3*t^8.36 - 13*t^8.45 + 3*t^8.541 + t^8.612 + 8*t^8.703 + 3*t^8.793 + t^8.864 + 3*t^8.955 - t^4.351/y - (2*t^6.802)/y - t^7.054/y - t^7.306/y + t^7.397/y + t^7.649/y + (5*t^7.901)/y + (3*t^8.153)/y + (3*t^8.405)/y + (3*t^8.496)/y + t^8.657/y + t^8.748/y - t^4.351*y - 2*t^6.802*y - t^7.054*y - t^7.306*y + t^7.397*y + t^7.649*y + 5*t^7.901*y + 3*t^8.153*y + 3*t^8.405*y + 3*t^8.496*y + t^8.657*y + t^8.748*y (3*t^2.45)/g1^2 + t^2.703/g1^12 + t^2.955/g1^22 + g1^22*t^3.045 + (3*t^3.802)/g1^8 + g1^26*t^4.144 + 2*g1^16*t^4.397 + (6*t^4.901)/g1^4 + g1^40*t^4.991 + (3*t^5.153)/g1^14 + (2*t^5.405)/g1^24 + 3*g1^20*t^5.496 + t^5.657/g1^34 + g1^10*t^5.748 + t^5.909/g1^44 - 4*t^6. + g1^44*t^6.091 + (7*t^6.252)/g1^10 + (2*t^6.504)/g1^20 + t^6.756/g1^30 + 7*g1^14*t^6.847 - 2*g1^4*t^7.099 + g1^48*t^7.19 + (6*t^7.351)/g1^6 + 4*g1^38*t^7.442 + (11*t^7.603)/g1^16 - g1^28*t^7.694 + (3*t^7.856)/g1^26 + 4*g1^18*t^7.946 + g1^62*t^8.037 + (2*t^8.108)/g1^36 + 5*g1^8*t^8.198 + (3*t^8.36)/g1^46 - (13*t^8.45)/g1^2 + 3*g1^42*t^8.541 + t^8.612/g1^56 + (8*t^8.703)/g1^12 + 3*g1^32*t^8.793 + t^8.864/g1^66 + (3*t^8.955)/g1^22 - t^4.351/(g1^6*y) - (2*t^6.802)/(g1^8*y) - t^7.054/(g1^18*y) - t^7.306/(g1^28*y) + (g1^16*t^7.397)/y + (g1^6*t^7.649)/y + (5*t^7.901)/(g1^4*y) + (3*t^8.153)/(g1^14*y) + (3*t^8.405)/(g1^24*y) + (3*g1^20*t^8.496)/y + t^8.657/(g1^34*y) + (g1^10*t^8.748)/y - (t^4.351*y)/g1^6 - (2*t^6.802*y)/g1^8 - (t^7.054*y)/g1^18 - (t^7.306*y)/g1^28 + g1^16*t^7.397*y + g1^6*t^7.649*y + (5*t^7.901*y)/g1^4 + (3*t^8.153*y)/g1^14 + (3*t^8.405*y)/g1^24 + 3*g1^20*t^8.496*y + (t^8.657*y)/g1^34 + g1^10*t^8.748*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55125 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{5}M_{6}$ 0.6581 0.8113 0.8112 [M:[1.1829, 0.9884, 0.8171, 0.8171, 0.7315, 1.2685], q:[0.4086, 0.4086], qb:[0.6031, 0.7743], phi:[0.4514]] 2*t^2.451 + t^2.708 + t^2.965 + t^3.035 + t^3.549 + 3*t^3.806 + t^4.132 + 2*t^4.389 + 3*t^4.903 + t^4.972 + 2*t^5.16 + t^5.417 + 2*t^5.486 + t^5.673 + t^5.743 + t^5.93 - 2*t^6. - t^4.354/y - t^4.354*y detail {a: 781921/1188100, c: 963951/1188100, M1: 1934/1635, M2: 1616/1635, M3: 1336/1635, M4: 1336/1635, M5: 1196/1635, M6: 2074/1635, q1: 668/1635, q2: 668/1635, qb1: 986/1635, qb2: 422/545, phi1: 246/545}