Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56791 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_2M_5$ + $ M_6q_2\tilde{q}_1$ + $ \phi_1q_2^2$ + $ M_7\phi_1q_1\tilde{q}_2$ | 0.7072 | 0.9052 | 0.7813 | [X:[], M:[0.8544, 1.0835, 1.1456, 0.7495, 0.9165, 0.6874, 0.6874], q:[0.3748, 0.7709], qb:[0.5417, 0.4796], phi:[0.4583]] | [X:[], M:[[5], [4], [-5], [-12], [-4], [-3], [-3]], q:[[-6], [1]], qb:[[2], [11]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_7$, $ M_4$, $ M_1$, $ M_5$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_3$, $ \phi_1q_1^2$, $ M_6^2$, $ M_6M_7$, $ M_7^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ M_4M_6$, $ M_4M_7$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_1M_6$, $ M_1M_7$, $ \phi_1\tilde{q}_1^2$, $ M_1M_4$, $ M_5M_6$, $ M_5M_7$, $ M_6\phi_1^2$, $ M_7\phi_1^2$, $ \phi_1q_1q_2$, $ M_4M_5$, $ M_4\phi_1^2$, $ M_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ M_1M_5$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_3M_6$, $ M_3M_7$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3M_4$, $ M_6\phi_1q_1^2$, $ M_7\phi_1q_1^2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1q_1^2$ | . | -2 | 2*t^2.06 + t^2.25 + t^2.56 + 2*t^2.75 + t^3.06 + t^3.44 + t^3.62 + 4*t^4.12 + t^4.25 + 2*t^4.31 + t^4.44 + t^4.5 + 3*t^4.63 + 5*t^4.81 + 2*t^5. + 3*t^5.13 + 3*t^5.31 + 4*t^5.5 + t^5.63 + 2*t^5.69 + t^5.81 + t^5.87 - 2*t^6. + t^6.13 + 7*t^6.19 + t^6.31 + 6*t^6.37 + t^6.5 + 2*t^6.56 + 5*t^6.69 + t^6.75 + t^6.82 + 9*t^6.87 + 2*t^7. + 5*t^7.06 + 5*t^7.19 + 3*t^7.25 + t^7.32 + 5*t^7.37 + 9*t^7.56 + 2*t^7.69 + 6*t^7.75 + 2*t^7.88 + 2*t^7.93 - 2*t^8.06 + t^8.12 + 2*t^8.19 + 10*t^8.25 + t^8.38 + 9*t^8.43 + t^8.5 - 3*t^8.56 + 6*t^8.62 + 2*t^8.69 + 2*t^8.75 + 2*t^8.81 + 3*t^8.88 + 14*t^8.94 + t^8.99 - t^4.37/y - (2*t^6.44)/y - t^6.62/y + (2*t^7.31)/y + (3*t^7.63)/y + (5*t^7.81)/y + (2*t^8.)/y + (3*t^8.13)/y + (5*t^8.31)/y + t^8.63/y + t^8.69/y + (2*t^8.81)/y - t^4.37*y - 2*t^6.44*y - t^6.62*y + 2*t^7.31*y + 3*t^7.63*y + 5*t^7.81*y + 2*t^8.*y + 3*t^8.13*y + 5*t^8.31*y + t^8.63*y + t^8.69*y + 2*t^8.81*y | (2*t^2.06)/g1^3 + t^2.25/g1^12 + g1^5*t^2.56 + (2*t^2.75)/g1^4 + g1^13*t^3.06 + t^3.44/g1^5 + t^3.62/g1^14 + (4*t^4.12)/g1^6 + g1^20*t^4.25 + (2*t^4.31)/g1^15 + g1^11*t^4.44 + t^4.5/g1^24 + 3*g1^2*t^4.63 + (5*t^4.81)/g1^7 + (2*t^5.)/g1^16 + 3*g1^10*t^5.13 + 3*g1*t^5.31 + (4*t^5.5)/g1^8 + g1^18*t^5.63 + (2*t^5.69)/g1^17 + g1^9*t^5.81 + t^5.87/g1^26 - 2*t^6. + g1^26*t^6.13 + (7*t^6.19)/g1^9 + g1^17*t^6.31 + (6*t^6.37)/g1^18 + g1^8*t^6.5 + (2*t^6.56)/g1^27 + (5*t^6.69)/g1 + t^6.75/g1^36 + g1^25*t^6.82 + (9*t^6.87)/g1^10 + 2*g1^16*t^7. + (5*t^7.06)/g1^19 + 5*g1^7*t^7.19 + (3*t^7.25)/g1^28 + g1^33*t^7.32 + (5*t^7.37)/g1^2 + (9*t^7.56)/g1^11 + 2*g1^15*t^7.69 + (6*t^7.75)/g1^20 + 2*g1^6*t^7.88 + (2*t^7.93)/g1^29 - (2*t^8.06)/g1^3 + t^8.12/g1^38 + 2*g1^23*t^8.19 + (10*t^8.25)/g1^12 + g1^14*t^8.38 + (9*t^8.43)/g1^21 + g1^40*t^8.5 - 3*g1^5*t^8.56 + (6*t^8.62)/g1^30 + 2*g1^31*t^8.69 + (2*t^8.75)/g1^4 + (2*t^8.81)/g1^39 + 3*g1^22*t^8.88 + (14*t^8.94)/g1^13 + t^8.99/g1^48 - t^4.37/(g1^2*y) - (2*t^6.44)/(g1^5*y) - t^6.62/(g1^14*y) + (2*t^7.31)/(g1^15*y) + (3*g1^2*t^7.63)/y + (5*t^7.81)/(g1^7*y) + (2*t^8.)/(g1^16*y) + (3*g1^10*t^8.13)/y + (5*g1*t^8.31)/y + (g1^18*t^8.63)/y + t^8.69/(g1^17*y) + (2*g1^9*t^8.81)/y - (t^4.37*y)/g1^2 - (2*t^6.44*y)/g1^5 - (t^6.62*y)/g1^14 + (2*t^7.31*y)/g1^15 + 3*g1^2*t^7.63*y + (5*t^7.81*y)/g1^7 + (2*t^8.*y)/g1^16 + 3*g1^10*t^8.13*y + 5*g1*t^8.31*y + g1^18*t^8.63*y + (t^8.69*y)/g1^17 + 2*g1^9*t^8.81*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55141 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_2M_5$ + $ M_6q_2\tilde{q}_1$ + $ \phi_1q_2^2$ | 0.6865 | 0.8649 | 0.7938 | [X:[], M:[0.8539, 1.0831, 1.1461, 0.7506, 0.9169, 0.6877], q:[0.3753, 0.7708], qb:[0.5416, 0.4786], phi:[0.4584]] | t^2.06 + t^2.25 + t^2.56 + 2*t^2.75 + t^3.06 + t^3.44 + t^3.63 + t^3.94 + 2*t^4.13 + t^4.25 + t^4.31 + t^4.44 + t^4.5 + 2*t^4.62 + 3*t^4.81 + 2*t^5. + 2*t^5.12 + 3*t^5.31 + 3*t^5.5 + t^5.62 + t^5.69 + t^5.81 + t^5.88 - t^6. - t^4.38/y - t^4.38*y | detail |