Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56762 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_3M_4$ + $ M_5\phi_1q_2^2$ + $ M_6\tilde{q}_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2\tilde{q}_1$ | 0.7406 | 0.9542 | 0.7762 | [X:[], M:[0.9789, 0.9664, 1.1233, 0.8767, 0.6974, 0.7746, 0.6724, 0.6849], q:[0.589, 0.4321], qb:[0.4446, 0.7808], phi:[0.4384]] | [X:[], M:[[1, -7], [-1, -11], [0, 4], [0, -4], [2, 10], [-1, -1], [-2, 2], [0, 6]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_8$, $ M_5$, $ M_6$, $ M_4$, $ \phi_1^2$, $ M_2$, $ M_1$, $ q_2\tilde{q}_2$, $ M_7^2$, $ M_7M_8$, $ M_5M_7$, $ M_8^2$, $ q_1\tilde{q}_2$, $ M_5M_8$, $ M_5^2$, $ M_6M_7$, $ M_6M_8$, $ \phi_1q_1q_2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_6^2$, $ M_4M_7$, $ M_7\phi_1^2$, $ M_4M_8$, $ M_8\phi_1^2$, $ M_4M_5$, $ M_5\phi_1^2$, $ \phi_1q_1^2$, $ M_2M_7$, $ M_4M_6$, $ M_1M_7$, $ M_2M_8$, $ M_6\phi_1^2$, $ M_2M_5$, $ M_1M_8$, $ M_1M_5$, $ M_2M_6$, $ M_4^2$, $ M_1M_6$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_2M_4$, $ M_2\phi_1^2$, $ M_1M_4$, $ M_1\phi_1^2$, $ M_7q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$ | . | -3 | t^2.02 + t^2.05 + t^2.09 + t^2.32 + 2*t^2.63 + t^2.9 + t^2.94 + t^3.64 + t^4.03 + t^4.07 + 3*t^4.11 + t^4.15 + t^4.18 + t^4.34 + 2*t^4.38 + 2*t^4.42 + 3*t^4.65 + 2*t^4.68 + 2*t^4.72 + t^4.85 + t^4.92 + 4*t^4.95 + 2*t^4.99 + t^5.03 + t^5.22 + 4*t^5.26 + t^5.53 + t^5.57 + t^5.66 + t^5.69 + t^5.73 + t^5.8 + t^5.84 + t^5.87 - 3*t^6. - t^6.04 + t^6.05 + t^6.09 + 3*t^6.13 + 3*t^6.16 + 3*t^6.2 + t^6.24 + t^6.27 + t^6.28 - t^6.31 + t^6.36 + 2*t^6.4 + 4*t^6.43 + 2*t^6.47 + 2*t^6.51 + t^6.54 + 3*t^6.66 + 4*t^6.7 + 6*t^6.74 + 2*t^6.78 + 2*t^6.81 - t^6.84 + t^6.87 - t^6.88 + t^6.9 + t^6.93 + t^6.94 + 5*t^6.97 + 6*t^7.01 + 6*t^7.05 + 2*t^7.08 + t^7.12 + t^7.17 + t^7.24 + 7*t^7.28 + 4*t^7.32 + 3*t^7.35 + t^7.48 + 2*t^7.55 + 5*t^7.58 + t^7.62 + t^7.66 + t^7.67 + t^7.71 + 2*t^7.75 + 2*t^7.82 + 3*t^7.85 + 7*t^7.89 + 2*t^7.93 + t^7.97 - 3*t^8.02 - 5*t^8.05 + t^8.07 - 5*t^8.09 + t^8.11 + t^8.12 - t^8.13 + 3*t^8.14 + 2*t^8.16 + 3*t^8.18 + 2*t^8.2 + 5*t^8.22 + 3*t^8.26 + 4*t^8.29 - 5*t^8.32 + t^8.33 - 3*t^8.36 + t^8.37 + t^8.38 - t^8.4 + 2*t^8.41 + t^8.43 + 4*t^8.45 + t^8.47 + 5*t^8.49 + t^8.5 + 4*t^8.53 + 3*t^8.56 + 2*t^8.6 - 6*t^8.63 - 2*t^8.67 + 3*t^8.68 + t^8.7 + 4*t^8.72 + t^8.74 + 8*t^8.76 + t^8.77 + 5*t^8.79 + t^8.81 + 6*t^8.83 - t^8.86 + 2*t^8.87 + t^8.88 - 4*t^8.9 + 2*t^8.91 + t^8.92 - 7*t^8.94 + t^8.95 + 3*t^8.96 - 2*t^8.97 + 5*t^8.99 - t^4.32/y - t^6.33/y - t^6.37/y - t^6.41/y - t^6.64/y - t^6.95/y + t^7.07/y + t^7.11/y + t^7.15/y - t^7.21/y - t^7.25/y + t^7.34/y + (2*t^7.38)/y + (2*t^7.42)/y + (2*t^7.65)/y + (3*t^7.68)/y + (2*t^7.72)/y + t^7.92/y + (4*t^7.95)/y + (3*t^7.99)/y + t^8.03/y + (2*t^8.22)/y + (3*t^8.26)/y + t^8.3/y - t^8.35/y - t^8.39/y - (2*t^8.42)/y - t^8.46/y - t^8.5/y + (2*t^8.53)/y + (2*t^8.57)/y + t^8.84/y - t^8.96/y - t^4.32*y - t^6.33*y - t^6.37*y - t^6.41*y - t^6.64*y - t^6.95*y + t^7.07*y + t^7.11*y + t^7.15*y - t^7.21*y - t^7.25*y + t^7.34*y + 2*t^7.38*y + 2*t^7.42*y + 2*t^7.65*y + 3*t^7.68*y + 2*t^7.72*y + t^7.92*y + 4*t^7.95*y + 3*t^7.99*y + t^8.03*y + 2*t^8.22*y + 3*t^8.26*y + t^8.3*y - t^8.35*y - t^8.39*y - 2*t^8.42*y - t^8.46*y - t^8.5*y + 2*t^8.53*y + 2*t^8.57*y + t^8.84*y - t^8.96*y | (g2^2*t^2.02)/g1^2 + g2^6*t^2.05 + g1^2*g2^10*t^2.09 + t^2.32/(g1*g2) + (2*t^2.63)/g2^4 + t^2.9/(g1*g2^11) + (g1*t^2.94)/g2^7 + t^3.64/(g1*g2^3) + (g2^4*t^4.03)/g1^4 + (g2^8*t^4.07)/g1^2 + 3*g2^12*t^4.11 + g1^2*g2^16*t^4.15 + g1^4*g2^20*t^4.18 + (g2*t^4.34)/g1^3 + (2*g2^5*t^4.38)/g1 + 2*g1*g2^9*t^4.42 + (3*t^4.65)/(g1^2*g2^2) + 2*g2^2*t^4.68 + 2*g1^2*g2^6*t^4.72 + g2^20*t^4.85 + t^4.92/(g1^3*g2^9) + (4*t^4.95)/(g1*g2^5) + (2*g1*t^4.99)/g2 + g1^3*g2^3*t^5.03 + t^5.22/(g1^2*g2^12) + (4*t^5.26)/g2^8 + t^5.53/(g1*g2^15) + (g1*t^5.57)/g2^11 + t^5.66/(g1^3*g2) + (g2^3*t^5.69)/g1 + g1*g2^7*t^5.73 + t^5.8/(g1^2*g2^22) + t^5.84/g2^18 + (g1^2*t^5.87)/g2^14 - 3*t^6. - g1^2*g2^4*t^6.04 + (g2^6*t^6.05)/g1^6 + (g2^10*t^6.09)/g1^4 + (3*g2^14*t^6.13)/g1^2 + 3*g2^18*t^6.16 + 3*g1^2*g2^22*t^6.2 + g1^4*g2^26*t^6.24 + t^6.27/(g1*g2^7) + g1^6*g2^30*t^6.28 - (g1*t^6.31)/g2^3 + (g2^3*t^6.36)/g1^5 + (2*g2^7*t^6.4)/g1^3 + (4*g2^11*t^6.43)/g1 + 2*g1*g2^15*t^6.47 + 2*g1^3*g2^19*t^6.51 + t^6.54/(g1^2*g2^14) + (3*t^6.66)/g1^4 + (4*g2^4*t^6.7)/g1^2 + 6*g2^8*t^6.74 + 2*g1^2*g2^12*t^6.78 + 2*g1^4*g2^16*t^6.81 - t^6.84/(g1*g2^17) + (g2^22*t^6.87)/g1^2 - (g1*t^6.88)/g2^13 + g2^26*t^6.9 + t^6.93/(g1^5*g2^7) + g1^2*g2^30*t^6.94 + (5*t^6.97)/(g1^3*g2^3) + (6*g2*t^7.01)/g1 + 6*g1*g2^5*t^7.05 + 2*g1^3*g2^9*t^7.08 + g1^5*g2^13*t^7.12 + (g2^19*t^7.17)/g1 + t^7.24/(g1^4*g2^10) + (7*t^7.28)/(g1^2*g2^6) + (4*t^7.32)/g2^2 + 3*g1^2*g2^2*t^7.35 + g2^16*t^7.48 + (2*t^7.55)/(g1^3*g2^13) + (5*t^7.58)/(g1*g2^9) + (g1*t^7.62)/g2^5 + (g1^3*t^7.66)/g2 + (g2*t^7.67)/g1^5 + (g2^5*t^7.71)/g1^3 + (2*g2^9*t^7.75)/g1 + t^7.82/(g1^4*g2^20) + g1^3*g2^17*t^7.82 + (3*t^7.85)/(g1^2*g2^16) + (7*t^7.89)/g2^12 + (2*g1^2*t^7.93)/g2^8 + (g1^4*t^7.97)/g2^4 - (3*g2^2*t^8.02)/g1^2 - 5*g2^6*t^8.05 + (g2^8*t^8.07)/g1^8 - 5*g1^2*g2^10*t^8.09 + (g2^12*t^8.11)/g1^6 + t^8.12/(g1^3*g2^23) - g1^4*g2^14*t^8.13 + (3*g2^16*t^8.14)/g1^4 + (2*t^8.16)/(g1*g2^19) + (3*g2^20*t^8.18)/g1^2 + (2*g1*t^8.2)/g2^15 + 5*g2^24*t^8.22 + 3*g1^2*g2^28*t^8.26 + t^8.29/(g1^3*g2^5) + 3*g1^4*g2^32*t^8.29 - (5*t^8.32)/(g1*g2) + g1^6*g2^36*t^8.33 - 3*g1*g2^3*t^8.36 + g1^8*g2^40*t^8.37 + (g2^5*t^8.38)/g1^7 - g1^3*g2^7*t^8.4 + (2*g2^9*t^8.41)/g1^5 + t^8.43/(g1^2*g2^26) + (4*g2^13*t^8.45)/g1^3 + t^8.47/g2^22 + (5*g2^17*t^8.49)/g1 + (g1^2*t^8.5)/g2^18 + 4*g1*g2^21*t^8.53 + t^8.56/(g1^4*g2^12) + 2*g1^3*g2^25*t^8.56 + 2*g1^5*g2^29*t^8.6 - (6*t^8.63)/g2^4 - 2*g1^2*t^8.67 + (3*g2^2*t^8.68)/g1^6 + t^8.7/(g1^3*g2^33) + (4*g2^6*t^8.72)/g1^4 + t^8.74/(g1*g2^29) + (8*g2^10*t^8.76)/g1^2 + (g1*t^8.77)/g2^25 + 5*g2^14*t^8.79 + (g1^3*t^8.81)/g2^21 + 6*g1^2*g2^18*t^8.83 - t^8.86/(g1^3*g2^15) + 2*g1^4*g2^22*t^8.87 + (g2^24*t^8.88)/g1^4 - (4*t^8.9)/(g1*g2^11) + 2*g1^6*g2^26*t^8.91 + (g2^28*t^8.92)/g1^2 - (7*g1*t^8.94)/g2^7 + t^8.95/(g1^7*g2^5) + 3*g2^32*t^8.96 - (2*g1^3*t^8.97)/g2^3 + (5*t^8.99)/(g1^5*g2) - t^4.32/(g2^2*y) - t^6.33/(g1^2*y) - (g2^4*t^6.37)/y - (g1^2*g2^8*t^6.41)/y - t^6.64/(g1*g2^3*y) - t^6.95/(g2^6*y) + (g2^8*t^7.07)/(g1^2*y) + (g2^12*t^7.11)/y + (g1^2*g2^16*t^7.15)/y - t^7.21/(g1*g2^13*y) - (g1*t^7.25)/(g2^9*y) + (g2*t^7.34)/(g1^3*y) + (2*g2^5*t^7.38)/(g1*y) + (2*g1*g2^9*t^7.42)/y + (2*t^7.65)/(g1^2*g2^2*y) + (3*g2^2*t^7.68)/y + (2*g1^2*g2^6*t^7.72)/y + t^7.92/(g1^3*g2^9*y) + (4*t^7.95)/(g1*g2^5*y) + (3*g1*t^7.99)/(g2*y) + (g1^3*g2^3*t^8.03)/y + (2*t^8.22)/(g1^2*g2^12*y) + (3*t^8.26)/(g2^8*y) + (g1^2*t^8.3)/(g2^4*y) - (g2^2*t^8.35)/(g1^4*y) - (g2^6*t^8.39)/(g1^2*y) - (2*g2^10*t^8.42)/y - (g1^2*g2^14*t^8.46)/y - (g1^4*g2^18*t^8.5)/y + (2*t^8.53)/(g1*g2^15*y) + (2*g1*t^8.57)/(g2^11*y) + t^8.84/(g2^18*y) - t^8.96/(g1^2*g2^4*y) - (t^4.32*y)/g2^2 - (t^6.33*y)/g1^2 - g2^4*t^6.37*y - g1^2*g2^8*t^6.41*y - (t^6.64*y)/(g1*g2^3) - (t^6.95*y)/g2^6 + (g2^8*t^7.07*y)/g1^2 + g2^12*t^7.11*y + g1^2*g2^16*t^7.15*y - (t^7.21*y)/(g1*g2^13) - (g1*t^7.25*y)/g2^9 + (g2*t^7.34*y)/g1^3 + (2*g2^5*t^7.38*y)/g1 + 2*g1*g2^9*t^7.42*y + (2*t^7.65*y)/(g1^2*g2^2) + 3*g2^2*t^7.68*y + 2*g1^2*g2^6*t^7.72*y + (t^7.92*y)/(g1^3*g2^9) + (4*t^7.95*y)/(g1*g2^5) + (3*g1*t^7.99*y)/g2 + g1^3*g2^3*t^8.03*y + (2*t^8.22*y)/(g1^2*g2^12) + (3*t^8.26*y)/g2^8 + (g1^2*t^8.3*y)/g2^4 - (g2^2*t^8.35*y)/g1^4 - (g2^6*t^8.39*y)/g1^2 - 2*g2^10*t^8.42*y - g1^2*g2^14*t^8.46*y - g1^4*g2^18*t^8.5*y + (2*t^8.53*y)/(g1*g2^15) + (2*g1*t^8.57*y)/g2^11 + (t^8.84*y)/g2^18 - (t^8.96*y)/(g1^2*g2^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55121 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_3M_4$ + $ M_5\phi_1q_2^2$ + $ M_6\tilde{q}_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ | 0.7198 | 0.9136 | 0.7879 | [X:[], M:[0.9767, 0.9642, 1.1243, 0.8757, 0.6989, 0.7748, 0.6738], q:[0.5917, 0.4316], qb:[0.4441, 0.7811], phi:[0.4379]] | t^2.02 + t^2.1 + t^2.32 + 2*t^2.63 + t^2.89 + t^2.93 + t^3.64 + t^3.94 + t^4.04 + 2*t^4.12 + t^4.19 + t^4.35 + t^4.38 + 2*t^4.42 + 3*t^4.65 + 2*t^4.72 + t^4.86 + t^4.91 + 3*t^4.95 + t^4.99 + t^5.03 + t^5.22 + 4*t^5.25 + t^5.52 + t^5.56 + t^5.66 + t^5.73 + t^5.78 + t^5.82 + t^5.86 + t^5.96 - 3*t^6. - t^4.31/y - t^4.31*y | detail |