Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56762 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.7406 | 0.9542 | 0.7762 | [M:[0.9789, 0.9664, 1.1233, 0.8767, 0.6974, 0.7746, 0.6724, 0.6849], q:[0.589, 0.4321], qb:[0.4446, 0.7808], phi:[0.4384]] | [M:[[1, -7], [-1, -11], [0, 4], [0, -4], [2, 10], [-1, -1], [-2, 2], [0, 6]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{8}$, ${ }M_{5}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{5}M_{7}$, ${ }M_{8}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{8}$, ${ }M_{5}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{8}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }M_{8}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$ | ${}$ | -3 | t^2.017 + t^2.055 + t^2.092 + t^2.324 + 2*t^2.63 + t^2.899 + t^2.937 + t^3.639 + t^4.034 + t^4.072 + 3*t^4.109 + t^4.147 + t^4.184 + t^4.341 + 2*t^4.378 + 2*t^4.416 + 3*t^4.647 + 2*t^4.685 + 2*t^4.722 + t^4.849 + t^4.916 + 4*t^4.954 + 2*t^4.991 + t^5.029 + t^5.223 + 4*t^5.26 + t^5.529 + t^5.567 + t^5.656 + t^5.693 + t^5.731 + t^5.798 + t^5.836 + t^5.873 - 3*t^6. - t^6.038 + t^6.052 + t^6.089 + 3*t^6.127 + 3*t^6.164 + 3*t^6.202 + t^6.239 + t^6.269 + t^6.277 - t^6.307 + t^6.358 + 2*t^6.396 + 4*t^6.433 + 2*t^6.471 + 2*t^6.508 + t^6.538 + 3*t^6.665 + 4*t^6.702 + 6*t^6.74 + 2*t^6.777 + 2*t^6.815 - t^6.845 + t^6.866 - t^6.882 + t^6.904 + t^6.934 + t^6.941 + 5*t^6.971 + 6*t^7.009 + 6*t^7.046 + 2*t^7.084 + t^7.121 + t^7.173 + t^7.24 + 7*t^7.278 + 4*t^7.315 + 3*t^7.353 + t^7.479 + 2*t^7.547 + 5*t^7.584 + t^7.622 + t^7.659 + t^7.673 + t^7.711 + 2*t^7.748 + t^7.816 + t^7.823 + 3*t^7.853 + 7*t^7.891 + 2*t^7.928 + t^7.966 - 3*t^8.017 - 5*t^8.055 + t^8.069 - 5*t^8.092 + t^8.106 + t^8.122 - t^8.13 + 3*t^8.144 + 2*t^8.16 + 3*t^8.181 + 2*t^8.197 + 5*t^8.219 + 3*t^8.256 + t^8.286 + 3*t^8.294 - 5*t^8.324 + t^8.331 - 3*t^8.361 + t^8.369 + t^8.375 - t^8.399 + 2*t^8.413 + t^8.429 + 4*t^8.45 + t^8.466 + 5*t^8.488 + t^8.504 + 4*t^8.525 + t^8.555 + 2*t^8.563 + 2*t^8.6 - 6*t^8.63 - 2*t^8.668 + 3*t^8.682 + t^8.698 + 4*t^8.719 + t^8.735 + 8*t^8.757 + t^8.773 + 5*t^8.794 + t^8.81 + 6*t^8.832 - t^8.862 + 2*t^8.869 + t^8.883 - 4*t^8.899 + 2*t^8.907 + t^8.921 - 7*t^8.937 + t^8.951 + 3*t^8.958 - 2*t^8.974 + 5*t^8.988 + t^8.996 - t^4.315/y - t^6.332/y - t^6.37/y - t^6.407/y - t^6.639/y - t^6.945/y + t^7.072/y + t^7.109/y + t^7.147/y - t^7.214/y - t^7.252/y + t^7.341/y + (2*t^7.378)/y + (2*t^7.416)/y + (2*t^7.647)/y + (3*t^7.685)/y + (2*t^7.722)/y + t^7.916/y + (4*t^7.954)/y + (3*t^7.991)/y + t^8.029/y + (2*t^8.223)/y + (3*t^8.26)/y + t^8.298/y - t^8.349/y - t^8.387/y - (2*t^8.424)/y - t^8.462/y - t^8.499/y + (2*t^8.529)/y + (2*t^8.567)/y + t^8.836/y - t^8.962/y - t^4.315*y - t^6.332*y - t^6.37*y - t^6.407*y - t^6.639*y - t^6.945*y + t^7.072*y + t^7.109*y + t^7.147*y - t^7.214*y - t^7.252*y + t^7.341*y + 2*t^7.378*y + 2*t^7.416*y + 2*t^7.647*y + 3*t^7.685*y + 2*t^7.722*y + t^7.916*y + 4*t^7.954*y + 3*t^7.991*y + t^8.029*y + 2*t^8.223*y + 3*t^8.26*y + t^8.298*y - t^8.349*y - t^8.387*y - 2*t^8.424*y - t^8.462*y - t^8.499*y + 2*t^8.529*y + 2*t^8.567*y + t^8.836*y - t^8.962*y | (g2^2*t^2.017)/g1^2 + g2^6*t^2.055 + g1^2*g2^10*t^2.092 + t^2.324/(g1*g2) + (2*t^2.63)/g2^4 + t^2.899/(g1*g2^11) + (g1*t^2.937)/g2^7 + t^3.639/(g1*g2^3) + (g2^4*t^4.034)/g1^4 + (g2^8*t^4.072)/g1^2 + 3*g2^12*t^4.109 + g1^2*g2^16*t^4.147 + g1^4*g2^20*t^4.184 + (g2*t^4.341)/g1^3 + (2*g2^5*t^4.378)/g1 + 2*g1*g2^9*t^4.416 + (3*t^4.647)/(g1^2*g2^2) + 2*g2^2*t^4.685 + 2*g1^2*g2^6*t^4.722 + g2^20*t^4.849 + t^4.916/(g1^3*g2^9) + (4*t^4.954)/(g1*g2^5) + (2*g1*t^4.991)/g2 + g1^3*g2^3*t^5.029 + t^5.223/(g1^2*g2^12) + (4*t^5.26)/g2^8 + t^5.529/(g1*g2^15) + (g1*t^5.567)/g2^11 + t^5.656/(g1^3*g2) + (g2^3*t^5.693)/g1 + g1*g2^7*t^5.731 + t^5.798/(g1^2*g2^22) + t^5.836/g2^18 + (g1^2*t^5.873)/g2^14 - 3*t^6. - g1^2*g2^4*t^6.038 + (g2^6*t^6.052)/g1^6 + (g2^10*t^6.089)/g1^4 + (3*g2^14*t^6.127)/g1^2 + 3*g2^18*t^6.164 + 3*g1^2*g2^22*t^6.202 + g1^4*g2^26*t^6.239 + t^6.269/(g1*g2^7) + g1^6*g2^30*t^6.277 - (g1*t^6.307)/g2^3 + (g2^3*t^6.358)/g1^5 + (2*g2^7*t^6.396)/g1^3 + (4*g2^11*t^6.433)/g1 + 2*g1*g2^15*t^6.471 + 2*g1^3*g2^19*t^6.508 + t^6.538/(g1^2*g2^14) + (3*t^6.665)/g1^4 + (4*g2^4*t^6.702)/g1^2 + 6*g2^8*t^6.74 + 2*g1^2*g2^12*t^6.777 + 2*g1^4*g2^16*t^6.815 - t^6.845/(g1*g2^17) + (g2^22*t^6.866)/g1^2 - (g1*t^6.882)/g2^13 + g2^26*t^6.904 + t^6.934/(g1^5*g2^7) + g1^2*g2^30*t^6.941 + (5*t^6.971)/(g1^3*g2^3) + (6*g2*t^7.009)/g1 + 6*g1*g2^5*t^7.046 + 2*g1^3*g2^9*t^7.084 + g1^5*g2^13*t^7.121 + (g2^19*t^7.173)/g1 + t^7.24/(g1^4*g2^10) + (7*t^7.278)/(g1^2*g2^6) + (4*t^7.315)/g2^2 + 3*g1^2*g2^2*t^7.353 + g2^16*t^7.479 + (2*t^7.547)/(g1^3*g2^13) + (5*t^7.584)/(g1*g2^9) + (g1*t^7.622)/g2^5 + (g1^3*t^7.659)/g2 + (g2*t^7.673)/g1^5 + (g2^5*t^7.711)/g1^3 + (2*g2^9*t^7.748)/g1 + t^7.816/(g1^4*g2^20) + g1^3*g2^17*t^7.823 + (3*t^7.853)/(g1^2*g2^16) + (7*t^7.891)/g2^12 + (2*g1^2*t^7.928)/g2^8 + (g1^4*t^7.966)/g2^4 - (3*g2^2*t^8.017)/g1^2 - 5*g2^6*t^8.055 + (g2^8*t^8.069)/g1^8 - 5*g1^2*g2^10*t^8.092 + (g2^12*t^8.106)/g1^6 + t^8.122/(g1^3*g2^23) - g1^4*g2^14*t^8.13 + (3*g2^16*t^8.144)/g1^4 + (2*t^8.16)/(g1*g2^19) + (3*g2^20*t^8.181)/g1^2 + (2*g1*t^8.197)/g2^15 + 5*g2^24*t^8.219 + 3*g1^2*g2^28*t^8.256 + t^8.286/(g1^3*g2^5) + 3*g1^4*g2^32*t^8.294 - (5*t^8.324)/(g1*g2) + g1^6*g2^36*t^8.331 - 3*g1*g2^3*t^8.361 + g1^8*g2^40*t^8.369 + (g2^5*t^8.375)/g1^7 - g1^3*g2^7*t^8.399 + (2*g2^9*t^8.413)/g1^5 + t^8.429/(g1^2*g2^26) + (4*g2^13*t^8.45)/g1^3 + t^8.466/g2^22 + (5*g2^17*t^8.488)/g1 + (g1^2*t^8.504)/g2^18 + 4*g1*g2^21*t^8.525 + t^8.555/(g1^4*g2^12) + 2*g1^3*g2^25*t^8.563 + 2*g1^5*g2^29*t^8.6 - (6*t^8.63)/g2^4 - 2*g1^2*t^8.668 + (3*g2^2*t^8.682)/g1^6 + t^8.698/(g1^3*g2^33) + (4*g2^6*t^8.719)/g1^4 + t^8.735/(g1*g2^29) + (8*g2^10*t^8.757)/g1^2 + (g1*t^8.773)/g2^25 + 5*g2^14*t^8.794 + (g1^3*t^8.81)/g2^21 + 6*g1^2*g2^18*t^8.832 - t^8.862/(g1^3*g2^15) + 2*g1^4*g2^22*t^8.869 + (g2^24*t^8.883)/g1^4 - (4*t^8.899)/(g1*g2^11) + 2*g1^6*g2^26*t^8.907 + (g2^28*t^8.921)/g1^2 - (7*g1*t^8.937)/g2^7 + t^8.951/(g1^7*g2^5) + 3*g2^32*t^8.958 - (2*g1^3*t^8.974)/g2^3 + (5*t^8.988)/(g1^5*g2) + g1^2*g2^36*t^8.996 - t^4.315/(g2^2*y) - t^6.332/(g1^2*y) - (g2^4*t^6.37)/y - (g1^2*g2^8*t^6.407)/y - t^6.639/(g1*g2^3*y) - t^6.945/(g2^6*y) + (g2^8*t^7.072)/(g1^2*y) + (g2^12*t^7.109)/y + (g1^2*g2^16*t^7.147)/y - t^7.214/(g1*g2^13*y) - (g1*t^7.252)/(g2^9*y) + (g2*t^7.341)/(g1^3*y) + (2*g2^5*t^7.378)/(g1*y) + (2*g1*g2^9*t^7.416)/y + (2*t^7.647)/(g1^2*g2^2*y) + (3*g2^2*t^7.685)/y + (2*g1^2*g2^6*t^7.722)/y + t^7.916/(g1^3*g2^9*y) + (4*t^7.954)/(g1*g2^5*y) + (3*g1*t^7.991)/(g2*y) + (g1^3*g2^3*t^8.029)/y + (2*t^8.223)/(g1^2*g2^12*y) + (3*t^8.26)/(g2^8*y) + (g1^2*t^8.298)/(g2^4*y) - (g2^2*t^8.349)/(g1^4*y) - (g2^6*t^8.387)/(g1^2*y) - (2*g2^10*t^8.424)/y - (g1^2*g2^14*t^8.462)/y - (g1^4*g2^18*t^8.499)/y + (2*t^8.529)/(g1*g2^15*y) + (2*g1*t^8.567)/(g2^11*y) + t^8.836/(g2^18*y) - t^8.962/(g1^2*g2^4*y) - (t^4.315*y)/g2^2 - (t^6.332*y)/g1^2 - g2^4*t^6.37*y - g1^2*g2^8*t^6.407*y - (t^6.639*y)/(g1*g2^3) - (t^6.945*y)/g2^6 + (g2^8*t^7.072*y)/g1^2 + g2^12*t^7.109*y + g1^2*g2^16*t^7.147*y - (t^7.214*y)/(g1*g2^13) - (g1*t^7.252*y)/g2^9 + (g2*t^7.341*y)/g1^3 + (2*g2^5*t^7.378*y)/g1 + 2*g1*g2^9*t^7.416*y + (2*t^7.647*y)/(g1^2*g2^2) + 3*g2^2*t^7.685*y + 2*g1^2*g2^6*t^7.722*y + (t^7.916*y)/(g1^3*g2^9) + (4*t^7.954*y)/(g1*g2^5) + (3*g1*t^7.991*y)/g2 + g1^3*g2^3*t^8.029*y + (2*t^8.223*y)/(g1^2*g2^12) + (3*t^8.26*y)/g2^8 + (g1^2*t^8.298*y)/g2^4 - (g2^2*t^8.349*y)/g1^4 - (g2^6*t^8.387*y)/g1^2 - 2*g2^10*t^8.424*y - g1^2*g2^14*t^8.462*y - g1^4*g2^18*t^8.499*y + (2*t^8.529*y)/(g1*g2^15) + (2*g1*t^8.567*y)/g2^11 + (t^8.836*y)/g2^18 - (t^8.962*y)/(g1^2*g2^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
58664 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}M_{7}$ + ${ }M_{5}X_{1}$ | 0.6227 | 0.7834 | 0.7948 | [X:[1.6139], M:[0.7587, 1.0898, 1.1448, 0.8552, 0.3861, 0.9517, 1.0483, 0.7172], q:[0.6482, 0.5931], qb:[0.2621, 0.7862], phi:[0.4276]] | t^2.152 + t^2.276 + 2*t^2.566 + t^2.855 + t^3.145 + t^3.269 + t^4.014 + t^4.138 + 2*t^4.303 + t^4.428 + t^4.552 + 2*t^4.717 + 2*t^4.842 + t^5.007 + 4*t^5.131 + t^5.172 + t^5.296 + 4*t^5.421 + t^5.545 + 2*t^5.71 + t^5.835 - 2*t^6. - t^4.283/y - t^4.283*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55121 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ | 0.7198 | 0.9136 | 0.7879 | [M:[0.9767, 0.9642, 1.1243, 0.8757, 0.6989, 0.7748, 0.6738], q:[0.5917, 0.4316], qb:[0.4441, 0.7811], phi:[0.4379]] | t^2.022 + t^2.097 + t^2.324 + 2*t^2.627 + t^2.892 + t^2.93 + t^3.638 + t^3.941 + t^4.043 + 2*t^4.118 + t^4.194 + t^4.346 + t^4.384 + 2*t^4.421 + 3*t^4.649 + 2*t^4.724 + t^4.864 + t^4.914 + 3*t^4.952 + t^4.989 + t^5.027 + t^5.217 + 4*t^5.254 + t^5.52 + t^5.557 + t^5.66 + t^5.735 + t^5.785 + t^5.823 + t^5.86 + t^5.962 - 3*t^6. - t^4.314/y - t^4.314*y | detail |