Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56709 | SU2adj1nf2 | $M_1\phi_1^2$ + $ M_2q_1q_2$ + $ \phi_1\tilde{q}_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_3^2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ + $ M_6q_2\tilde{q}_1$ + $ M_7\phi_1q_2\tilde{q}_2$ | 0.6454 | 0.8471 | 0.7619 | [X:[], M:[1.0305, 0.939, 1.0, 1.0305, 0.7424, 0.7119, 0.7424], q:[0.5305, 0.5305], qb:[0.7576, 0.2424], phi:[0.4847]] | [X:[], M:[[-4], [8], [0], [-4], [1], [5], [1]], q:[[-4], [-4]], qb:[[-1], [1]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_5$, $ M_7$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_2$, $ M_3$, $ M_1$, $ M_4$, $ q_2\tilde{q}_1$, $ M_6^2$, $ M_5M_6$, $ M_6M_7$, $ M_5^2$, $ M_5M_7$, $ M_7^2$, $ M_6q_1\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_2M_6$, $ M_2M_5$, $ M_2M_7$, $ M_3M_6$, $ M_3M_5$, $ M_1M_6$, $ M_4M_6$, $ M_3M_7$, $ M_1M_5$, $ M_4M_5$, $ M_1M_7$, $ M_4M_7$, $ M_3q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_2^2$, $ M_2M_3$, $ M_1M_2$, $ M_2M_4$ | . | -4 | t^2.14 + 2*t^2.23 + 2*t^2.32 + t^2.82 + t^3. + 2*t^3.09 + t^3.86 + t^4.27 + 2*t^4.36 + 5*t^4.45 + 4*t^4.55 + 6*t^4.64 + t^4.95 + 2*t^5.04 + t^5.14 + 4*t^5.23 + 6*t^5.32 + 4*t^5.41 + t^5.63 + t^5.82 + t^5.91 - 4*t^6. + 3*t^6.09 + 4*t^6.18 + t^6.41 + 2*t^6.5 + 3*t^6.59 + 7*t^6.68 + 8*t^6.77 + 9*t^6.86 + 10*t^6.96 + t^7.09 + 2*t^7.18 + 4*t^7.27 + 4*t^7.36 + 7*t^7.45 + 9*t^7.55 + 10*t^7.64 + 10*t^7.73 + t^7.77 + 2*t^7.86 + t^7.95 + 3*t^8.04 - 2*t^8.14 - 9*t^8.23 - 3*t^8.32 + 6*t^8.41 + t^8.45 + 8*t^8.5 + t^8.54 + 3*t^8.63 + 4*t^8.73 + t^8.82 + 11*t^8.91 - t^4.45/y - t^6.59/y - (2*t^6.68)/y - t^7.27/y + (3*t^7.36)/y + (3*t^7.45)/y + (3*t^7.55)/y + (2*t^7.64)/y + t^7.95/y + (2*t^8.04)/y + (3*t^8.14)/y + (6*t^8.23)/y + (7*t^8.32)/y + (4*t^8.41)/y - t^8.73/y - t^8.82/y - t^8.91/y - t^4.45*y - t^6.59*y - 2*t^6.68*y - t^7.27*y + 3*t^7.36*y + 3*t^7.45*y + 3*t^7.55*y + 2*t^7.64*y + t^7.95*y + 2*t^8.04*y + 3*t^8.14*y + 6*t^8.23*y + 7*t^8.32*y + 4*t^8.41*y - t^8.73*y - t^8.82*y - t^8.91*y | g1^5*t^2.14 + 2*g1*t^2.23 + (2*t^2.32)/g1^3 + g1^8*t^2.82 + t^3. + (2*t^3.09)/g1^4 + t^3.86/g1^5 + g1^10*t^4.27 + 2*g1^6*t^4.36 + 5*g1^2*t^4.45 + (4*t^4.55)/g1^2 + (6*t^4.64)/g1^6 + g1^13*t^4.95 + 2*g1^9*t^5.04 + g1^5*t^5.14 + 4*g1*t^5.23 + (6*t^5.32)/g1^3 + (4*t^5.41)/g1^7 + g1^16*t^5.63 + g1^8*t^5.82 + g1^4*t^5.91 - 4*t^6. + (3*t^6.09)/g1^4 + (4*t^6.18)/g1^8 + g1^15*t^6.41 + 2*g1^11*t^6.5 + 3*g1^7*t^6.59 + 7*g1^3*t^6.68 + (8*t^6.77)/g1 + (9*t^6.86)/g1^5 + (10*t^6.96)/g1^9 + g1^18*t^7.09 + 2*g1^14*t^7.18 + 4*g1^10*t^7.27 + 4*g1^6*t^7.36 + 7*g1^2*t^7.45 + (9*t^7.55)/g1^2 + (10*t^7.64)/g1^6 + (10*t^7.73)/g1^10 + g1^21*t^7.77 + 2*g1^17*t^7.86 + g1^13*t^7.95 + 3*g1^9*t^8.04 - 2*g1^5*t^8.14 - 9*g1*t^8.23 - (3*t^8.32)/g1^3 + (6*t^8.41)/g1^7 + g1^24*t^8.45 + (8*t^8.5)/g1^11 + g1^20*t^8.54 + 3*g1^16*t^8.63 + 4*g1^12*t^8.73 + g1^8*t^8.82 + 11*g1^4*t^8.91 - (g1^2*t^4.45)/y - (g1^7*t^6.59)/y - (2*g1^3*t^6.68)/y - (g1^10*t^7.27)/y + (3*g1^6*t^7.36)/y + (3*g1^2*t^7.45)/y + (3*t^7.55)/(g1^2*y) + (2*t^7.64)/(g1^6*y) + (g1^13*t^7.95)/y + (2*g1^9*t^8.04)/y + (3*g1^5*t^8.14)/y + (6*g1*t^8.23)/y + (7*t^8.32)/(g1^3*y) + (4*t^8.41)/(g1^7*y) - (g1^12*t^8.73)/y - (g1^8*t^8.82)/y - (g1^4*t^8.91)/y - g1^2*t^4.45*y - g1^7*t^6.59*y - 2*g1^3*t^6.68*y - g1^10*t^7.27*y + 3*g1^6*t^7.36*y + 3*g1^2*t^7.45*y + (3*t^7.55*y)/g1^2 + (2*t^7.64*y)/g1^6 + g1^13*t^7.95*y + 2*g1^9*t^8.04*y + 3*g1^5*t^8.14*y + 6*g1*t^8.23*y + (7*t^8.32*y)/g1^3 + (4*t^8.41*y)/g1^7 - g1^12*t^8.73*y - g1^8*t^8.82*y - g1^4*t^8.91*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55019 | SU2adj1nf2 | $M_1\phi_1^2$ + $ M_2q_1q_2$ + $ \phi_1\tilde{q}_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_3^2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ + $ M_6q_2\tilde{q}_1$ | 0.6261 | 0.8118 | 0.7712 | [X:[], M:[1.0287, 0.9427, 1.0, 1.0287, 0.7428, 0.7142], q:[0.5287, 0.5287], qb:[0.7572, 0.2428], phi:[0.4857]] | t^2.14 + t^2.23 + 2*t^2.31 + t^2.83 + t^3. + 2*t^3.09 + t^3.77 + t^3.86 + t^4.29 + t^4.37 + 3*t^4.46 + 2*t^4.54 + 6*t^4.63 + t^4.97 + t^5.06 + t^5.14 + 3*t^5.23 + 4*t^5.31 + 4*t^5.4 + t^5.66 + t^5.83 + 2*t^5.91 - 3*t^6. - t^4.46/y - t^4.46*y | detail |