Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56681 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{4}^{2}$ + ${ }M_{3}M_{7}$ 0.6917 0.8492 0.8144 [M:[0.9886, 1.0057, 1.0114, 1.0, 0.9943, 0.9971, 0.9886], q:[0.5, 0.5114], qb:[0.4943, 0.4886], phi:[0.5014]] [M:[[8], [-4], [-8], [0], [4], [2], [8]], q:[[0], [-8]], qb:[[4], [8]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{7}$, ${ }M_{5}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{1}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{4}M_{5}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{6}$ ${}$ -2 t^2.949 + 2*t^2.966 + t^2.983 + t^2.991 + t^3. + t^3.017 + t^4.436 + t^4.453 + 2*t^4.47 + t^4.487 + 2*t^4.504 + t^4.521 + t^4.539 + t^4.573 + t^5.897 + 2*t^5.914 + 3*t^5.931 + t^5.94 + 2*t^5.949 + 2*t^5.957 + 2*t^5.966 + t^5.974 + t^5.983 + t^5.991 - 2*t^6. + t^6.009 - t^6.017 - t^6.034 - t^6.051 - t^6.069 + t^7.384 + 3*t^7.402 + 4*t^7.419 + 5*t^7.436 + 5*t^7.453 + 5*t^7.47 + 3*t^7.487 + t^7.504 + t^7.521 + t^7.539 + t^7.59 + t^8.846 + 2*t^8.863 + t^8.872 + 3*t^8.88 + 2*t^8.889 + 4*t^8.897 + 4*t^8.906 + 3*t^8.914 + 5*t^8.923 + t^8.931 + 6*t^8.94 - 3*t^8.949 + 5*t^8.957 - 7*t^8.966 + 5*t^8.974 - 6*t^8.983 + t^8.991 - t^4.504/y - t^7.47/y + t^7.539/y + (2*t^8.914)/y + (2*t^8.931)/y + t^8.94/y + (3*t^8.949)/y + (2*t^8.957)/y + (3*t^8.966)/y + t^8.974/y + (3*t^8.983)/y + t^8.991/y - t^4.504*y - t^7.47*y + t^7.539*y + 2*t^8.914*y + 2*t^8.931*y + t^8.94*y + 3*t^8.949*y + 2*t^8.957*y + 3*t^8.966*y + t^8.974*y + 3*t^8.983*y + t^8.991*y g1^12*t^2.949 + 2*g1^8*t^2.966 + g1^4*t^2.983 + g1^2*t^2.991 + t^3. + t^3.017/g1^4 + g1^15*t^4.436 + g1^11*t^4.453 + 2*g1^7*t^4.47 + g1^3*t^4.487 + (2*t^4.504)/g1 + t^4.521/g1^5 + t^4.539/g1^9 + t^4.573/g1^17 + g1^24*t^5.897 + 2*g1^20*t^5.914 + 3*g1^16*t^5.931 + g1^14*t^5.94 + 2*g1^12*t^5.949 + 2*g1^10*t^5.957 + 2*g1^8*t^5.966 + g1^6*t^5.974 + g1^4*t^5.983 + g1^2*t^5.991 - 2*t^6. + t^6.009/g1^2 - t^6.017/g1^4 - t^6.034/g1^8 - t^6.051/g1^12 - t^6.069/g1^16 + g1^27*t^7.384 + 3*g1^23*t^7.402 + 4*g1^19*t^7.419 + 5*g1^15*t^7.436 + 5*g1^11*t^7.453 + 5*g1^7*t^7.47 + 3*g1^3*t^7.487 + t^7.504/g1 + t^7.521/g1^5 + t^7.539/g1^9 + t^7.59/g1^21 + g1^36*t^8.846 + 2*g1^32*t^8.863 + g1^30*t^8.872 + 3*g1^28*t^8.88 + 2*g1^26*t^8.889 + 4*g1^24*t^8.897 + 4*g1^22*t^8.906 + 3*g1^20*t^8.914 + 5*g1^18*t^8.923 + g1^16*t^8.931 + 6*g1^14*t^8.94 - 3*g1^12*t^8.949 + 5*g1^10*t^8.957 - 7*g1^8*t^8.966 + 5*g1^6*t^8.974 - 6*g1^4*t^8.983 + g1^2*t^8.991 - t^4.504/(g1*y) - (g1^7*t^7.47)/y + t^7.539/(g1^9*y) + (2*g1^20*t^8.914)/y + (2*g1^16*t^8.931)/y + (g1^14*t^8.94)/y + (3*g1^12*t^8.949)/y + (2*g1^10*t^8.957)/y + (3*g1^8*t^8.966)/y + (g1^6*t^8.974)/y + (3*g1^4*t^8.983)/y + (g1^2*t^8.991)/y - (t^4.504*y)/g1 - g1^7*t^7.47*y + (t^7.539*y)/g1^9 + 2*g1^20*t^8.914*y + 2*g1^16*t^8.931*y + g1^14*t^8.94*y + 3*g1^12*t^8.949*y + 2*g1^10*t^8.957*y + 3*g1^8*t^8.966*y + g1^6*t^8.974*y + 3*g1^4*t^8.983*y + g1^2*t^8.991*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55084 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{4}^{2}$ 0.6917 0.8473 0.8164 [M:[1.013, 0.9935, 0.987, 1.0, 1.0065, 1.0032], q:[0.5, 0.487], qb:[0.5065, 0.513], phi:[0.4984]] t^2.961 + t^2.981 + t^3. + t^3.01 + t^3.019 + t^3.039 + t^3.058 + t^4.417 + t^4.456 + t^4.476 + 2*t^4.495 + t^4.515 + 2*t^4.534 + t^4.554 + t^4.573 + t^5.971 + t^5.99 - t^6. - t^4.495/y - t^4.495*y detail