Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56659 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_3M_4$ + $ M_5\phi_1q_2^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_1$ + $ M_7\tilde{q}_1\tilde{q}_2$ | 0.7176 | 0.9089 | 0.7895 | [X:[], M:[0.9983, 0.9363, 1.1256, 0.8744, 0.7504, 0.6884, 0.7504], q:[0.5955, 0.4062], qb:[0.4682, 0.7814], phi:[0.4372]] | [X:[], M:[[-32], [-22], [12], [-12], [8], [18], [8]], q:[[33], [-1]], qb:[[-11], [3]], phi:[[-6]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_5$, $ M_7$, $ M_4$, $ \phi_1^2$, $ M_2$, $ M_1$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_6^2$, $ q_1\tilde{q}_2$, $ M_5M_6$, $ M_6M_7$, $ \phi_1q_1q_2$, $ M_5^2$, $ M_5M_7$, $ M_7^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_6$, $ M_6\phi_1^2$, $ M_4M_5$, $ M_2M_6$, $ M_4M_7$, $ M_5\phi_1^2$, $ M_7\phi_1^2$, $ \phi_1q_1^2$, $ M_2M_5$, $ M_1M_6$, $ M_2M_7$, $ M_4^2$, $ M_1M_5$, $ M_1M_7$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_2M_4$, $ M_2\phi_1^2$, $ M_2^2$, $ M_1M_4$, $ M_1\phi_1^2$, $ M_6q_2\tilde{q}_2$, $ M_1M_2$, $ M_5q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_1^2$ | . | -3 | t^2.07 + 2*t^2.25 + 2*t^2.62 + t^2.81 + t^2.99 + t^3.56 + t^4.12 + 2*t^4.13 + 3*t^4.32 + 4*t^4.5 + 2*t^4.69 + 5*t^4.87 + t^4.88 + 3*t^5.06 + 5*t^5.25 + t^5.43 + 2*t^5.62 + t^5.63 + t^5.8 + t^5.81 + t^5.99 - 3*t^6. + t^6.19 + 2*t^6.2 + 2*t^6.37 + 4*t^6.38 + 5*t^6.57 + t^6.74 + 8*t^6.75 + 6*t^6.94 + t^6.95 + t^7.12 + 10*t^7.13 + 2*t^7.14 + 7*t^7.31 + 8*t^7.5 + t^7.51 + 4*t^7.68 + t^7.69 + 8*t^7.87 + 4*t^8.06 - 3*t^8.07 + 5*t^8.24 - 7*t^8.25 + 2*t^8.26 + 2*t^8.43 - t^8.44 + 5*t^8.45 + 2*t^8.61 - 3*t^8.62 + 6*t^8.63 + t^8.8 - 3*t^8.81 + 8*t^8.82 + t^8.98 - 3*t^8.99 - t^4.31/y - t^6.38/y - (2*t^6.56)/y - t^6.93/y - t^7.12/y - t^7.31/y + (3*t^7.32)/y + (2*t^7.5)/y + (3*t^7.69)/y + (5*t^7.87)/y + (5*t^8.06)/y + (4*t^8.25)/y + (2*t^8.43)/y - t^8.44/y + (2*t^8.62)/y - t^8.63/y + t^8.8/y - t^8.81/y - t^4.31*y - t^6.38*y - 2*t^6.56*y - t^6.93*y - t^7.12*y - t^7.31*y + 3*t^7.32*y + 2*t^7.5*y + 3*t^7.69*y + 5*t^7.87*y + 5*t^8.06*y + 4*t^8.25*y + 2*t^8.43*y - t^8.44*y + 2*t^8.62*y - t^8.63*y + t^8.8*y - t^8.81*y | g1^18*t^2.07 + 2*g1^8*t^2.25 + (2*t^2.62)/g1^12 + t^2.81/g1^22 + t^2.99/g1^32 + g1^2*t^3.56 + t^4.12/g1^28 + 2*g1^36*t^4.13 + 3*g1^26*t^4.32 + 4*g1^16*t^4.5 + 2*g1^6*t^4.69 + (5*t^4.87)/g1^4 + g1^60*t^4.88 + (3*t^5.06)/g1^14 + (5*t^5.25)/g1^24 + t^5.43/g1^34 + (2*t^5.62)/g1^44 + g1^20*t^5.63 + t^5.8/g1^54 + g1^10*t^5.81 + t^5.99/g1^64 - 3*t^6. + t^6.19/g1^10 + 2*g1^54*t^6.2 + (2*t^6.37)/g1^20 + 4*g1^44*t^6.38 + 5*g1^34*t^6.57 + t^6.74/g1^40 + 8*g1^24*t^6.75 + 6*g1^14*t^6.94 + g1^78*t^6.95 + t^7.12/g1^60 + 10*g1^4*t^7.13 + 2*g1^68*t^7.14 + (7*t^7.31)/g1^6 + (8*t^7.5)/g1^16 + g1^48*t^7.51 + (4*t^7.68)/g1^26 + g1^38*t^7.69 + (8*t^7.87)/g1^36 + (4*t^8.06)/g1^46 - 3*g1^18*t^8.07 + (5*t^8.24)/g1^56 - 7*g1^8*t^8.25 + 2*g1^72*t^8.26 + (2*t^8.43)/g1^66 - t^8.44/g1^2 + 5*g1^62*t^8.45 + (2*t^8.61)/g1^76 - (3*t^8.62)/g1^12 + 6*g1^52*t^8.63 + t^8.8/g1^86 - (3*t^8.81)/g1^22 + 8*g1^42*t^8.82 + t^8.98/g1^96 - (3*t^8.99)/g1^32 - t^4.31/(g1^6*y) - (g1^12*t^6.38)/y - (2*g1^2*t^6.56)/y - t^6.93/(g1^18*y) - t^7.12/(g1^28*y) - t^7.31/(g1^38*y) + (3*g1^26*t^7.32)/y + (2*g1^16*t^7.5)/y + (3*g1^6*t^7.69)/y + (5*t^7.87)/(g1^4*y) + (5*t^8.06)/(g1^14*y) + (4*t^8.25)/(g1^24*y) + (2*t^8.43)/(g1^34*y) - (g1^30*t^8.44)/y + (2*t^8.62)/(g1^44*y) - (g1^20*t^8.63)/y + t^8.8/(g1^54*y) - (g1^10*t^8.81)/y - (t^4.31*y)/g1^6 - g1^12*t^6.38*y - 2*g1^2*t^6.56*y - (t^6.93*y)/g1^18 - (t^7.12*y)/g1^28 - (t^7.31*y)/g1^38 + 3*g1^26*t^7.32*y + 2*g1^16*t^7.5*y + 3*g1^6*t^7.69*y + (5*t^7.87*y)/g1^4 + (5*t^8.06*y)/g1^14 + (4*t^8.25*y)/g1^24 + (2*t^8.43*y)/g1^34 - g1^30*t^8.44*y + (2*t^8.62*y)/g1^44 - g1^20*t^8.63*y + (t^8.8*y)/g1^54 - g1^10*t^8.81*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
54922 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_3M_4$ + $ M_5\phi_1q_2^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_1$ | 0.6986 | 0.8743 | 0.799 | [X:[], M:[0.9932, 0.9328, 1.1276, 0.8724, 0.7517, 0.6913], q:[0.6008, 0.406], qb:[0.4664, 0.7819], phi:[0.4362]] | t^2.07 + t^2.26 + 2*t^2.62 + t^2.8 + t^2.98 + t^3.56 + t^3.74 + t^4.11 + 2*t^4.15 + 2*t^4.33 + 2*t^4.51 + 2*t^4.69 + 3*t^4.87 + t^4.91 + 2*t^5.05 + 4*t^5.23 + t^5.42 + 2*t^5.6 + t^5.64 + t^5.78 + t^5.82 + t^5.96 - 2*t^6. - t^4.31/y - t^4.31*y | detail |