Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56623 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ | 0.7131 | 0.9119 | 0.782 | [X:[], M:[1.182, 0.9981, 0.818, 0.818, 0.728, 0.728, 0.818], q:[0.409, 0.409], qb:[0.5929, 0.773], phi:[0.454]] | [X:[], M:[[2], [-22], [-2], [-2], [8], [8], [-2]], q:[[-1], [-1]], qb:[[23], [3]], phi:[[-6]]] | 1 | {a: 26566873/37255728, c: 16985839/18627864, M1: 3124/2643, M2: 2638/2643, M3: 2162/2643, M4: 2162/2643, M5: 1924/2643, M6: 1924/2643, M7: 2162/2643, q1: 1081/2643, q2: 1081/2643, qb1: 1567/2643, qb2: 681/881, phi1: 400/881} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_6$, $ M_3$, $ M_4$, $ M_7$, $ \phi_1^2$, $ M_2$, $ q_2\tilde{q}_1$, $ \phi_1q_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_5$, $ M_4M_5$, $ M_3M_6$, $ M_4M_6$, $ M_5M_7$, $ M_6M_7$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_3M_7$, $ M_4M_7$, $ M_7^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2M_5$, $ M_2M_6$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_7\phi_1^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_2M_3$, $ M_2M_4$, $ M_2M_7$, $ \phi_1^4$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2^2$ | $M_6\phi_1q_1^2$, $ M_2q_2\tilde{q}_1$ | -2 | 2*t^2.18 + 3*t^2.45 + t^2.72 + t^2.99 + t^3.01 + t^3.82 + t^4.1 + 5*t^4.37 + 6*t^4.64 + 8*t^4.91 + t^4.92 + 5*t^5.18 + 2*t^5.19 + 2*t^5.45 + 3*t^5.46 + t^5.72 + t^5.73 + t^5.99 - 2*t^6. + t^6.01 + t^6.27 + 2*t^6.28 + 8*t^6.55 - t^6.81 + 14*t^6.82 + 13*t^7.09 + 3*t^7.1 + 15*t^7.36 + 7*t^7.37 + 10*t^7.63 + 5*t^7.64 + 5*t^7.9 + 4*t^7.91 + t^7.93 + 4*t^8.17 - 4*t^8.18 + 2*t^8.2 + 3*t^8.44 - 11*t^8.45 + 6*t^8.47 + t^8.71 - 4*t^8.72 + 12*t^8.74 + t^8.98 - 5*t^8.99 - t^4.36/y - (2*t^6.55)/y - (2*t^6.82)/y - t^7.09/y - t^7.36/y + (2*t^7.37)/y + (7*t^7.64)/y + (7*t^7.91)/y + (7*t^8.18)/y + (2*t^8.19)/y + (3*t^8.45)/y + (3*t^8.46)/y + t^8.72/y - (2*t^8.73)/y - t^4.36*y - 2*t^6.55*y - 2*t^6.82*y - t^7.09*y - t^7.36*y + 2*t^7.37*y + 7*t^7.64*y + 7*t^7.91*y + 7*t^8.18*y + 2*t^8.19*y + 3*t^8.45*y + 3*t^8.46*y + t^8.72*y - 2*t^8.73*y | 2*g1^8*t^2.18 + (3*t^2.45)/g1^2 + t^2.72/g1^12 + t^2.99/g1^22 + g1^22*t^3.01 + t^3.82/g1^8 + g1^26*t^4.1 + 5*g1^16*t^4.37 + 6*g1^6*t^4.64 + (8*t^4.91)/g1^4 + g1^40*t^4.92 + (5*t^5.18)/g1^14 + 2*g1^30*t^5.19 + (2*t^5.45)/g1^24 + 3*g1^20*t^5.46 + t^5.72/g1^34 + g1^10*t^5.73 + t^5.99/g1^44 - 2*t^6. + g1^44*t^6.01 + t^6.27/g1^10 + 2*g1^34*t^6.28 + 8*g1^24*t^6.55 - t^6.81/g1^30 + 14*g1^14*t^6.82 + 13*g1^4*t^7.09 + 3*g1^48*t^7.1 + (15*t^7.36)/g1^6 + 7*g1^38*t^7.37 + (10*t^7.63)/g1^16 + 5*g1^28*t^7.64 + (5*t^7.9)/g1^26 + 4*g1^18*t^7.91 + g1^62*t^7.93 + (4*t^8.17)/g1^36 - 4*g1^8*t^8.18 + 2*g1^52*t^8.2 + (3*t^8.44)/g1^46 - (11*t^8.45)/g1^2 + 6*g1^42*t^8.47 + t^8.71/g1^56 - (4*t^8.72)/g1^12 + 12*g1^32*t^8.74 + t^8.98/g1^66 - (5*t^8.99)/g1^22 - t^4.36/(g1^6*y) - (2*g1^2*t^6.55)/y - (2*t^6.82)/(g1^8*y) - t^7.09/(g1^18*y) - t^7.36/(g1^28*y) + (2*g1^16*t^7.37)/y + (7*g1^6*t^7.64)/y + (7*t^7.91)/(g1^4*y) + (7*t^8.18)/(g1^14*y) + (2*g1^30*t^8.19)/y + (3*t^8.45)/(g1^24*y) + (3*g1^20*t^8.46)/y + t^8.72/(g1^34*y) - (2*g1^10*t^8.73)/y - (t^4.36*y)/g1^6 - 2*g1^2*t^6.55*y - (2*t^6.82*y)/g1^8 - (t^7.09*y)/g1^18 - (t^7.36*y)/g1^28 + 2*g1^16*t^7.37*y + 7*g1^6*t^7.64*y + (7*t^7.91*y)/g1^4 + (7*t^8.18*y)/g1^14 + 2*g1^30*t^8.19*y + (3*t^8.45*y)/g1^24 + 3*g1^20*t^8.46*y + (t^8.72*y)/g1^34 - 2*g1^10*t^8.73*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
54902 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ | 0.6977 | 0.8853 | 0.7881 | [X:[], M:[1.1817, 1.0013, 0.8183, 0.8183, 0.7268, 0.7268], q:[0.4092, 0.4092], qb:[0.5895, 0.7725], phi:[0.4549]] | 2*t^2.18 + 2*t^2.45 + t^2.73 + 2*t^3. + t^3.55 + t^3.82 + t^4.09 + 5*t^4.36 + 4*t^4.64 + t^4.9 + 5*t^4.91 + 6*t^5.18 + 2*t^5.45 + t^5.46 + 4*t^5.73 + t^5.99 - t^4.36/y - t^4.36*y | detail | {a: 52048525/74596056, c: 8255182/9324507, M1: 6250/5289, M2: 5296/5289, M3: 4328/5289, M4: 4328/5289, M5: 3844/5289, M6: 3844/5289, q1: 2164/5289, q2: 2164/5289, qb1: 3118/5289, qb2: 1362/1763, phi1: 802/1763} |