Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56590 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_2M_5$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1^2$ 0.6731 0.8363 0.8049 [X:[], M:[1.1597, 1.0347, 0.8403, 0.7709, 0.9653, 0.7777, 1.0972], q:[0.3854, 0.4548], qb:[0.5799, 0.7743], phi:[0.4514]] [X:[], M:[[-14], [22], [14], [-30], [-22], [32], [4]], q:[[-15], [29]], qb:[[-7], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_6$, $ M_3$, $ M_5$, $ M_2$, $ M_7$, $ M_1$, $ \phi_1q_1q_2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ M_3M_4$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_6$, $ M_3^2$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_5$, $ M_5M_6$, $ M_2M_4$, $ M_3M_5$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_6$, $ M_4M_7$, $ M_2M_3$, $ M_6M_7$, $ M_1M_4$, $ M_5^2$, $ M_1M_6$, $ M_3M_7$ . -1 t^2.31 + t^2.33 + t^2.52 + t^2.9 + t^3.1 + t^3.29 + t^3.48 + t^3.87 + t^4.06 + t^4.08 + t^4.25 + t^4.46 + t^4.63 + t^4.65 + t^4.67 + 2*t^4.83 + t^4.85 + t^5.04 + t^5.21 + t^5.23 + t^5.42 + t^5.44 + t^5.6 + t^5.62 + t^5.79 + 2*t^5.81 - t^6. + t^6.19 + t^6.21 + t^6.38 + 3*t^6.4 + t^6.42 + t^6.56 + t^6.58 + t^6.6 + t^6.77 + t^6.79 + t^6.94 + t^6.96 + 2*t^6.98 + t^7. + 2*t^7.15 + 2*t^7.17 + 2*t^7.19 + 2*t^7.35 + t^7.37 + t^7.52 + 2*t^7.54 + 2*t^7.56 + t^7.73 + t^7.75 + t^7.77 + t^7.92 + t^7.94 + 2*t^7.96 + t^8.1 + 2*t^8.13 + 2*t^8.15 + t^8.17 - t^8.31 + t^8.5 - t^8.52 + 2*t^8.54 + t^8.69 + 2*t^8.71 + 2*t^8.73 + t^8.75 + t^8.88 - t^8.9 + 3*t^8.92 + t^8.94 - t^4.35/y - t^6.67/y - t^6.69/y + t^7.65/y + t^7.83/y + t^7.85/y + t^8.02/y + t^8.04/y + t^8.21/y + t^8.23/y + (2*t^8.42)/y + t^8.44/y + t^8.6/y + (2*t^8.62)/y + t^8.79/y + (2*t^8.81)/y - t^8.98/y - t^4.35*y - t^6.67*y - t^6.69*y + t^7.65*y + t^7.83*y + t^7.85*y + t^8.02*y + t^8.04*y + t^8.21*y + t^8.23*y + 2*t^8.42*y + t^8.44*y + t^8.6*y + 2*t^8.62*y + t^8.79*y + 2*t^8.81*y - t^8.98*y t^2.31/g1^30 + g1^32*t^2.33 + g1^14*t^2.52 + t^2.9/g1^22 + g1^22*t^3.1 + g1^4*t^3.29 + t^3.48/g1^14 + g1^12*t^3.87 + t^4.06/g1^6 + g1^56*t^4.08 + t^4.25/g1^24 + g1^20*t^4.46 + t^4.63/g1^60 + g1^2*t^4.65 + g1^64*t^4.67 + (2*t^4.83)/g1^16 + g1^46*t^4.85 + g1^28*t^5.04 + t^5.21/g1^52 + g1^10*t^5.23 + t^5.42/g1^8 + g1^54*t^5.44 + t^5.6/g1^26 + g1^36*t^5.62 + t^5.79/g1^44 + 2*g1^18*t^5.81 - t^6. + t^6.19/g1^18 + g1^44*t^6.21 + t^6.38/g1^36 + 3*g1^26*t^6.4 + g1^88*t^6.42 + t^6.56/g1^54 + g1^8*t^6.58 + g1^70*t^6.6 + t^6.77/g1^10 + g1^52*t^6.79 + t^6.94/g1^90 + t^6.96/g1^28 + 2*g1^34*t^6.98 + g1^96*t^7. + (2*t^7.15)/g1^46 + 2*g1^16*t^7.17 + 2*g1^78*t^7.19 + (2*t^7.35)/g1^2 + g1^60*t^7.37 + t^7.52/g1^82 + (2*t^7.54)/g1^20 + 2*g1^42*t^7.56 + t^7.73/g1^38 + g1^24*t^7.75 + g1^86*t^7.77 + t^7.92/g1^56 + g1^6*t^7.94 + 2*g1^68*t^7.96 + t^8.1/g1^74 + (2*t^8.13)/g1^12 + 2*g1^50*t^8.15 + g1^112*t^8.17 - t^8.31/g1^30 + t^8.5/g1^48 - g1^14*t^8.52 + 2*g1^76*t^8.54 + t^8.69/g1^66 + (2*t^8.71)/g1^4 + 2*g1^58*t^8.73 + g1^120*t^8.75 + t^8.88/g1^84 - t^8.9/g1^22 + 3*g1^40*t^8.92 + g1^102*t^8.94 - t^4.35/(g1^2*y) - t^6.67/(g1^32*y) - (g1^30*t^6.69)/y + (g1^2*t^7.65)/y + t^7.83/(g1^16*y) + (g1^46*t^7.85)/y + t^8.02/(g1^34*y) + (g1^28*t^8.04)/y + t^8.21/(g1^52*y) + (g1^10*t^8.23)/y + (2*t^8.42)/(g1^8*y) + (g1^54*t^8.44)/y + t^8.6/(g1^26*y) + (2*g1^36*t^8.62)/y + t^8.79/(g1^44*y) + (2*g1^18*t^8.81)/y - t^8.98/(g1^62*y) - (t^4.35*y)/g1^2 - (t^6.67*y)/g1^32 - g1^30*t^6.69*y + g1^2*t^7.65*y + (t^7.83*y)/g1^16 + g1^46*t^7.85*y + (t^8.02*y)/g1^34 + g1^28*t^8.04*y + (t^8.21*y)/g1^52 + g1^10*t^8.23*y + (2*t^8.42*y)/g1^8 + g1^54*t^8.44*y + (t^8.6*y)/g1^26 + 2*g1^36*t^8.62*y + (t^8.79*y)/g1^44 + 2*g1^18*t^8.81*y - (t^8.98*y)/g1^62


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
54638 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_2M_5$ + $ M_6\phi_1q_1^2$ 0.682 0.8512 0.8012 [X:[], M:[1.158, 1.0374, 0.842, 0.7672, 0.9626, 0.7816], q:[0.3836, 0.4583], qb:[0.579, 0.7744], phi:[0.4511]] t^2.3 + t^2.34 + t^2.53 + t^2.71 + t^2.89 + t^3.11 + t^3.47 + t^3.88 + t^4.06 + t^4.1 + t^4.24 + t^4.47 + t^4.6 + t^4.65 + t^4.69 + 2*t^4.83 + t^4.87 + t^5.01 + 2*t^5.05 + t^5.19 + 2*t^5.23 + 2*t^5.41 + t^5.46 + t^5.59 + t^5.78 + 2*t^5.82 - t^6. - t^4.35/y - t^4.35*y detail