Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56565 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_5M_6$ + $ M_7\tilde{q}_1\tilde{q}_2$ + $ M_8\phi_1q_2^2$ 0.7304 0.9151 0.7981 [X:[], M:[1.0592, 0.8825, 0.9408, 1.0292, 0.9708, 1.0292, 0.8525, 0.6696], q:[0.5146, 0.4262], qb:[0.6029, 0.5446], phi:[0.4779]] [X:[], M:[[4, 12], [-20, 4], [-4, -12], [8, -8], [-8, 8], [8, -8], [-16, -16], [19, 17]], q:[[4, -4], [-8, -8]], qb:[[16, 0], [0, 16]], phi:[[-3, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_8$, $ M_7$, $ M_2$, $ M_3$, $ \phi_1^2$, $ M_4$, $ M_6$, $ M_1$, $ M_8^2$, $ \phi_1q_1q_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_7M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_8$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_8$, $ M_8\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_4M_8$, $ M_6M_8$, $ M_7^2$, $ M_1M_8$, $ M_2M_7$, $ M_2^2$, $ M_3M_7$, $ M_7\phi_1^2$, $ M_2\phi_1^2$, $ M_3^2$, $ M_4M_7$, $ M_6M_7$, $ M_3\phi_1^2$, $ M_2M_4$, $ M_2M_6$, $ M_1M_7$, $ \phi_1^4$, $ M_3M_4$, $ M_3M_6$, $ M_4\phi_1^2$, $ M_6\phi_1^2$ . -3 t^2.01 + t^2.56 + t^2.65 + t^2.82 + t^2.87 + 2*t^3.09 + t^3.18 + t^4.02 + t^4.26 + t^4.35 + 2*t^4.52 + t^4.57 + t^4.61 + t^4.66 + t^4.7 + t^4.79 + t^4.83 + 2*t^4.88 + t^5.05 + 2*t^5.1 + t^5.11 + t^5.19 + t^5.2 + t^5.3 + t^5.38 + t^5.42 + t^5.51 + 2*t^5.64 + t^5.69 + 2*t^5.73 + t^5.91 + 2*t^5.95 - 3*t^6. + t^6.03 + t^6.05 - t^6.09 + 2*t^6.17 + t^6.36 + t^6.53 + t^6.58 + t^6.62 + t^6.67 + t^6.71 + t^6.8 + t^6.81 + t^6.84 + 2*t^6.89 + t^6.9 + t^6.99 + t^7.06 + 2*t^7.08 + 2*t^7.11 + t^7.12 + t^7.17 + t^7.2 + 2*t^7.21 + t^7.26 + t^7.3 + 3*t^7.34 + t^7.35 + 2*t^7.39 + 2*t^7.43 + 2*t^7.52 + t^7.57 + 4*t^7.61 + t^7.65 + t^7.67 + 2*t^7.7 + 2*t^7.74 + t^7.76 + t^7.79 - t^7.83 + t^7.85 + 2*t^7.87 + t^7.88 + t^7.92 + 2*t^7.94 + 2*t^7.96 + t^7.98 - 4*t^8.01 + t^8.04 + t^8.05 + t^8.07 - t^8.1 + 2*t^8.14 + t^8.16 + t^8.18 + 2*t^8.2 + t^8.25 + t^8.29 + t^8.36 + 2*t^8.38 + t^8.47 + 2*t^8.51 + t^8.54 - 4*t^8.56 + t^8.58 + 2*t^8.6 + t^8.63 - 4*t^8.65 + t^8.67 + t^8.72 + 2*t^8.73 - t^8.74 + 2*t^8.78 + t^8.8 - 2*t^8.82 + t^8.85 - 2*t^8.87 + 2*t^8.89 - t^8.91 - t^4.43/y - t^6.44/y - t^6.99/y - t^7.08/y - t^7.3/y + t^7.35/y - t^7.52/y + (2*t^7.57)/y + t^7.66/y + t^7.79/y + t^7.83/y + (2*t^7.88)/y + (2*t^8.1)/y + t^8.19/y + t^8.2/y + t^8.38/y + (2*t^8.42)/y - t^8.45/y + t^8.47/y + t^8.51/y + (2*t^8.64)/y + t^8.69/y + (3*t^8.73)/y + t^8.83/y + (2*t^8.91)/y + (2*t^8.95)/y - t^4.43*y - t^6.44*y - t^6.99*y - t^7.08*y - t^7.3*y + t^7.35*y - t^7.52*y + 2*t^7.57*y + t^7.66*y + t^7.79*y + t^7.83*y + 2*t^7.88*y + 2*t^8.1*y + t^8.19*y + t^8.2*y + t^8.38*y + 2*t^8.42*y - t^8.45*y + t^8.47*y + t^8.51*y + 2*t^8.64*y + t^8.69*y + 3*t^8.73*y + t^8.83*y + 2*t^8.91*y + 2*t^8.95*y g1^19*g2^17*t^2.01 + t^2.56/(g1^16*g2^16) + (g2^4*t^2.65)/g1^20 + t^2.82/(g1^4*g2^12) + t^2.87/(g1^6*g2^2) + (2*g1^8*t^3.09)/g2^8 + g1^4*g2^12*t^3.18 + g1^38*g2^34*t^4.02 + t^4.26/(g1^7*g2^13) + (g2^7*t^4.35)/g1^11 + (2*g1^5*t^4.52)/g2^9 + g1^3*g2*t^4.57 + g1*g2^11*t^4.61 + (g2^21*t^4.66)/g1 + (g2^31*t^4.7)/g1^3 + (g1^17*t^4.79)/g2^5 + g1^15*g2^5*t^4.83 + 2*g1^13*g2^15*t^4.88 + (g1^29*t^5.05)/g2 + 2*g1^27*g2^9*t^5.1 + t^5.11/(g1^32*g2^32) + g1^23*g2^29*t^5.19 + t^5.2/(g1^36*g2^12) + (g2^8*t^5.3)/g1^40 + t^5.38/(g1^20*g2^28) + t^5.42/(g1^22*g2^18) + (g2^2*t^5.51)/g1^26 + (2*t^5.64)/(g1^8*g2^24) + t^5.69/(g1^10*g2^14) + (2*t^5.73)/(g1^12*g2^4) + (g1^4*t^5.91)/g2^20 + (2*g1^2*t^5.95)/g2^10 - 3*t^6. + g1^57*g2^51*t^6.03 + (g2^10*t^6.05)/g1^2 - (g2^20*t^6.09)/g1^4 + (2*g1^16*t^6.17)/g2^16 + g1^8*g2^24*t^6.36 + g1^24*g2^8*t^6.53 + g1^22*g2^18*t^6.58 + g1^20*g2^28*t^6.62 + g1^18*g2^38*t^6.67 + g1^16*g2^48*t^6.71 + g1^36*g2^12*t^6.8 + t^6.81/(g1^23*g2^29) + g1^34*g2^22*t^6.84 + 2*g1^32*g2^32*t^6.89 + t^6.9/(g1^27*g2^9) + (g2^11*t^6.99)/g1^31 + g1^48*g2^16*t^7.06 + (2*t^7.08)/(g1^11*g2^25) + 2*g1^46*g2^26*t^7.11 + t^7.12/(g1^13*g2^15) + t^7.17/(g1^15*g2^5) + g1^42*g2^46*t^7.2 + (2*g2^5*t^7.21)/g1^17 + (g2^15*t^7.26)/g1^19 + (g2^25*t^7.3)/g1^21 + (3*g1*t^7.34)/g2^21 + (g2^35*t^7.35)/g1^23 + (2*t^7.39)/(g1*g2^11) + (2*t^7.43)/(g1^3*g2) + (2*g2^19*t^7.52)/g1^7 + (g2^29*t^7.57)/g1^9 + (4*g1^13*t^7.61)/g2^17 + (g1^11*t^7.65)/g2^7 + t^7.67/(g1^48*g2^48) + 2*g1^9*g2^3*t^7.7 + 2*g1^7*g2^13*t^7.74 + t^7.76/(g1^52*g2^28) + g1^5*g2^23*t^7.79 - g1^3*g2^33*t^7.83 + t^7.85/(g1^56*g2^8) + (2*g1^25*t^7.87)/g2^13 + g1*g2^43*t^7.88 + (g1^23*t^7.92)/g2^3 + t^7.94/(g1^36*g2^44) + (g2^12*t^7.94)/g1^60 + 2*g1^21*g2^7*t^7.96 + t^7.98/(g1^38*g2^34) - 4*g1^19*g2^17*t^8.01 + g1^76*g2^68*t^8.04 + g1^17*g2^27*t^8.05 + t^8.07/(g1^42*g2^14) - g1^15*g2^37*t^8.1 + (2*g1^37*t^8.14)/g2^9 + (g2^6*t^8.16)/g1^46 + g1^35*g2*t^8.18 + (2*t^8.2)/(g1^24*g2^40) + t^8.25/(g1^26*g2^30) + t^8.29/(g1^28*g2^20) + g1^27*g2^41*t^8.36 + (2*t^8.38)/g1^32 + t^8.47/(g1^12*g2^36) + (2*t^8.51)/(g1^14*g2^26) + g1^43*g2^25*t^8.54 - (4*t^8.56)/(g1^16*g2^16) + g1^41*g2^35*t^8.58 + (2*t^8.6)/(g1^18*g2^6) + g1^39*g2^45*t^8.63 - (4*g2^4*t^8.65)/g1^20 + g1^37*g2^55*t^8.67 + g1^35*g2^65*t^8.72 + (2*t^8.73)/g2^32 - (g2^24*t^8.74)/g1^24 + (2*t^8.78)/(g1^2*g2^22) + g1^55*g2^29*t^8.8 - (2*t^8.82)/(g1^4*g2^12) + g1^53*g2^39*t^8.85 - (2*t^8.87)/(g1^6*g2^2) + 2*g1^51*g2^49*t^8.89 - (g2^8*t^8.91)/g1^8 - t^4.43/(g1^3*g2*y) - (g1^16*g2^16*t^6.44)/y - t^6.99/(g1^19*g2^17*y) - (g2^3*t^7.08)/(g1^23*y) - t^7.3/(g1^9*g2^3*y) + (g2^7*t^7.35)/(g1^11*y) - (g1^5*t^7.52)/(g2^9*y) + (2*g1^3*g2*t^7.57)/y + (g2^21*t^7.66)/(g1*y) + (g1^17*t^7.79)/(g2^5*y) + (g1^15*g2^5*t^7.83)/y + (2*g1^13*g2^15*t^7.88)/y + (2*g1^27*g2^9*t^8.1)/y + (g1^23*g2^29*t^8.19)/y + t^8.2/(g1^36*g2^12*y) + t^8.38/(g1^20*g2^28*y) + (2*t^8.42)/(g1^22*g2^18*y) - (g1^35*g2^33*t^8.45)/y + t^8.47/(g1^24*g2^8*y) + (g2^2*t^8.51)/(g1^26*y) + (2*t^8.64)/(g1^8*g2^24*y) + t^8.69/(g1^10*g2^14*y) + (3*t^8.73)/(g1^12*g2^4*y) + (g2^16*t^8.83)/(g1^16*y) + (2*g1^4*t^8.91)/(g2^20*y) + (2*g1^2*t^8.95)/(g2^10*y) - (t^4.43*y)/(g1^3*g2) - g1^16*g2^16*t^6.44*y - (t^6.99*y)/(g1^19*g2^17) - (g2^3*t^7.08*y)/g1^23 - (t^7.3*y)/(g1^9*g2^3) + (g2^7*t^7.35*y)/g1^11 - (g1^5*t^7.52*y)/g2^9 + 2*g1^3*g2*t^7.57*y + (g2^21*t^7.66*y)/g1 + (g1^17*t^7.79*y)/g2^5 + g1^15*g2^5*t^7.83*y + 2*g1^13*g2^15*t^7.88*y + 2*g1^27*g2^9*t^8.1*y + g1^23*g2^29*t^8.19*y + (t^8.2*y)/(g1^36*g2^12) + (t^8.38*y)/(g1^20*g2^28) + (2*t^8.42*y)/(g1^22*g2^18) - g1^35*g2^33*t^8.45*y + (t^8.47*y)/(g1^24*g2^8) + (g2^2*t^8.51*y)/g1^26 + (2*t^8.64*y)/(g1^8*g2^24) + (t^8.69*y)/(g1^10*g2^14) + (3*t^8.73*y)/(g1^12*g2^4) + (g2^16*t^8.83*y)/g1^16 + (2*g1^4*t^8.91*y)/g2^20 + (2*g1^2*t^8.95*y)/g2^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
54353 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_5M_6$ + $ M_7\tilde{q}_1\tilde{q}_2$ 0.7095 0.8737 0.8121 [X:[], M:[1.0598, 0.8819, 0.9402, 1.0292, 0.9708, 1.0292, 0.8513], q:[0.5146, 0.4256], qb:[0.6035, 0.5452], phi:[0.4778]] t^2.55 + t^2.65 + t^2.82 + t^2.87 + 2*t^3.09 + t^3.18 + t^3.99 + t^4.25 + t^4.35 + 2*t^4.52 + t^4.61 + t^4.7 + t^4.79 + t^4.88 + t^5.05 + t^5.11 + t^5.2 + t^5.29 + t^5.37 + t^5.42 + t^5.51 + 2*t^5.64 + t^5.69 + 2*t^5.73 + t^5.91 + 2*t^5.95 - 3*t^6. - t^4.43/y - t^4.43*y detail