Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56542 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ + $ M_2M_7$ | 0.7351 | 0.941 | 0.7812 | [X:[], M:[0.67, 1.11, 0.965, 0.74, 0.815, 0.74, 0.89], q:[0.7775, 0.5525], qb:[0.4825, 0.4075], phi:[0.445]] | [X:[], M:[[36], [-12], [22], [-8], [2], [-8], [12]], q:[[-3], [-33]], qb:[[11], [1]], phi:[[6]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_4$, $ M_6$, $ M_5$, $ M_7$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_4$, $ M_1M_6$, $ \phi_1\tilde{q}_1^2$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_5$, $ \phi_1q_2^2$, $ M_4M_5$, $ M_5M_6$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_5^2$, $ M_4M_7$, $ M_6M_7$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_3$, $ M_4q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_3M_4$, $ M_3M_6$, $ M_5M_7$, $ M_5\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_2$, $ M_3M_5$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ M_7q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_7$, $ M_3\phi_1^2$, $ q_2^2\tilde{q}_2^2$ | . | -3 | t^2.01 + 2*t^2.22 + t^2.45 + 2*t^2.67 + t^2.88 + t^2.9 + t^4.01 + t^4.02 + t^4.21 + 3*t^4.23 + 4*t^4.44 + t^4.46 + t^4.65 + 2*t^4.66 + 2*t^4.68 + 6*t^4.89 + t^4.91 + 2*t^5.1 + 4*t^5.12 + t^5.32 + 4*t^5.34 + 2*t^5.55 + t^5.57 + t^5.76 - 3*t^6. + t^6.02 + t^6.03 - t^6.21 + t^6.23 + 3*t^6.24 + t^6.43 + 6*t^6.45 + t^6.47 + 6*t^6.66 + 4*t^6.68 + 2*t^6.69 + 2*t^6.87 + 5*t^6.88 + 8*t^6.9 + t^6.92 + 2*t^7.09 + 10*t^7.11 + 4*t^7.13 + 5*t^7.32 + 7*t^7.34 + 4*t^7.35 + t^7.53 + t^7.54 + 9*t^7.56 + t^7.58 + 3*t^7.77 + 5*t^7.79 + t^7.98 + 2*t^8.01 + t^8.03 + t^8.04 - 6*t^8.22 + 3*t^8.24 + 3*t^8.25 - t^8.43 - 4*t^8.45 + 6*t^8.46 + t^8.48 + t^8.64 + t^8.67 + 5*t^8.69 + 2*t^8.7 + t^8.86 + 3*t^8.88 + 3*t^8.9 + 8*t^8.91 + t^8.93 - t^4.34/y - t^6.35/y - (2*t^6.55)/y - t^6.78/y - t^7.01/y + t^7.23/y + (2*t^7.44)/y + t^7.46/y + (3*t^7.66)/y + (2*t^7.68)/y + (6*t^7.89)/y + t^7.91/y + (2*t^8.1)/y + (6*t^8.12)/y + (2*t^8.32)/y + (2*t^8.34)/y - t^8.36/y + (2*t^8.55)/y - (2*t^8.77)/y - t^8.79/y - t^4.34*y - t^6.35*y - 2*t^6.55*y - t^6.78*y - t^7.01*y + t^7.23*y + 2*t^7.44*y + t^7.46*y + 3*t^7.66*y + 2*t^7.68*y + 6*t^7.89*y + t^7.91*y + 2*t^8.1*y + 6*t^8.12*y + 2*t^8.32*y + 2*t^8.34*y - t^8.36*y + 2*t^8.55*y - 2*t^8.77*y - t^8.79*y | g1^36*t^2.01 + (2*t^2.22)/g1^8 + g1^2*t^2.45 + 2*g1^12*t^2.67 + t^2.88/g1^32 + g1^22*t^2.9 + g1^18*t^4.01 + g1^72*t^4.02 + t^4.21/g1^26 + 3*g1^28*t^4.23 + (4*t^4.44)/g1^16 + g1^38*t^4.46 + t^4.65/g1^60 + (2*t^4.66)/g1^6 + 2*g1^48*t^4.68 + 6*g1^4*t^4.89 + g1^58*t^4.91 + (2*t^5.1)/g1^40 + 4*g1^14*t^5.12 + t^5.32/g1^30 + 4*g1^24*t^5.34 + (2*t^5.55)/g1^20 + g1^34*t^5.57 + t^5.76/g1^64 - 3*t^6. + g1^54*t^6.02 + g1^108*t^6.03 - t^6.21/g1^44 + g1^10*t^6.23 + 3*g1^64*t^6.24 + t^6.43/g1^34 + 6*g1^20*t^6.45 + g1^74*t^6.47 + (6*t^6.66)/g1^24 + 4*g1^30*t^6.68 + 2*g1^84*t^6.69 + (2*t^6.87)/g1^68 + (5*t^6.88)/g1^14 + 8*g1^40*t^6.9 + g1^94*t^6.92 + (2*t^7.09)/g1^58 + (10*t^7.11)/g1^4 + 4*g1^50*t^7.13 + (5*t^7.32)/g1^48 + 7*g1^6*t^7.34 + 4*g1^60*t^7.35 + t^7.53/g1^92 + t^7.54/g1^38 + 9*g1^16*t^7.56 + g1^70*t^7.58 + (3*t^7.77)/g1^28 + 5*g1^26*t^7.79 + t^7.98/g1^72 + 2*g1^36*t^8.01 + g1^90*t^8.03 + g1^144*t^8.04 - (6*t^8.22)/g1^8 + 3*g1^46*t^8.24 + 3*g1^100*t^8.25 - t^8.43/g1^52 - 4*g1^2*t^8.45 + 6*g1^56*t^8.46 + g1^110*t^8.48 + t^8.64/g1^96 + g1^12*t^8.67 + 5*g1^66*t^8.69 + 2*g1^120*t^8.7 + t^8.86/g1^86 + (3*t^8.88)/g1^32 + 3*g1^22*t^8.9 + 8*g1^76*t^8.91 + g1^130*t^8.93 - (g1^6*t^4.34)/y - (g1^42*t^6.35)/y - (2*t^6.55)/(g1^2*y) - (g1^8*t^6.78)/y - (g1^18*t^7.01)/y + (g1^28*t^7.23)/y + (2*t^7.44)/(g1^16*y) + (g1^38*t^7.46)/y + (3*t^7.66)/(g1^6*y) + (2*g1^48*t^7.68)/y + (6*g1^4*t^7.89)/y + (g1^58*t^7.91)/y + (2*t^8.1)/(g1^40*y) + (6*g1^14*t^8.12)/y + (2*t^8.32)/(g1^30*y) + (2*g1^24*t^8.34)/y - (g1^78*t^8.36)/y + (2*t^8.55)/(g1^20*y) - (2*t^8.77)/(g1^10*y) - (g1^44*t^8.79)/y - g1^6*t^4.34*y - g1^42*t^6.35*y - (2*t^6.55*y)/g1^2 - g1^8*t^6.78*y - g1^18*t^7.01*y + g1^28*t^7.23*y + (2*t^7.44*y)/g1^16 + g1^38*t^7.46*y + (3*t^7.66*y)/g1^6 + 2*g1^48*t^7.68*y + 6*g1^4*t^7.89*y + g1^58*t^7.91*y + (2*t^8.1*y)/g1^40 + 6*g1^14*t^8.12*y + (2*t^8.32*y)/g1^30 + 2*g1^24*t^8.34*y - g1^78*t^8.36*y + (2*t^8.55*y)/g1^20 - (2*t^8.77*y)/g1^10 - g1^44*t^8.79*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
53870 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ | 0.7253 | 0.9243 | 0.7847 | [X:[], M:[0.6832, 1.1056, 0.973, 0.7371, 0.8157, 0.7371], q:[0.7764, 0.5404], qb:[0.4865, 0.4079], phi:[0.4472]] | t^2.05 + 2*t^2.21 + t^2.45 + t^2.68 + t^2.84 + t^2.92 + t^3.32 + t^4.02 + t^4.1 + t^4.19 + 3*t^4.26 + 4*t^4.42 + t^4.5 + t^4.58 + 2*t^4.66 + t^4.73 + 4*t^4.89 + t^4.97 + 2*t^5.06 + 3*t^5.13 + t^5.29 + 3*t^5.37 + 3*t^5.53 + t^5.69 + t^5.76 - 2*t^6. - t^4.34/y - t^4.34*y | detail |