Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56528 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3^2$ + $ M_1M_2$ + $ M_2M_5$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ | 0.7362 | 0.9263 | 0.7947 | [X:[], M:[0.9151, 1.0849, 1.0, 0.8303, 0.9151, 0.9151, 0.6909], q:[0.5, 0.5849], qb:[0.4151, 0.5849], phi:[0.4788]] | [X:[], M:[[-4], [4], [0], [-8], [-4], [-4], [9]], q:[[0], [4]], qb:[[-4], [4]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_4$, $ M_1$, $ M_5$, $ M_6$, $ \phi_1^2$, $ M_3$, $ q_2\tilde{q}_1$, $ M_7^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_7$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_7$, $ M_5M_7$, $ M_6M_7$, $ M_7\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_3M_7$, $ M_7q_2\tilde{q}_1$, $ M_1M_4$, $ M_4M_5$, $ M_4M_6$, $ M_4\phi_1^2$, $ M_1^2$, $ M_3M_4$, $ M_1M_5$, $ M_5^2$, $ M_1M_6$, $ M_5M_6$, $ M_6^2$, $ M_4q_2\tilde{q}_1$, $ M_1\phi_1^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_1M_3$, $ M_3M_5$, $ M_3M_6$, $ \phi_1^4$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_3\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$ | $q_2^2\tilde{q}_1^2$ | -3 | t^2.07 + t^2.49 + 3*t^2.75 + t^2.87 + 2*t^3. + t^4.15 + t^4.18 + 3*t^4.44 + t^4.56 + 2*t^4.69 + 3*t^4.82 + 4*t^4.95 + t^4.98 + 2*t^5.07 + 3*t^5.24 + t^5.36 + 6*t^5.49 + 3*t^5.62 + 4*t^5.75 + 2*t^5.87 - 3*t^6. + t^6.22 - 3*t^6.25 + t^6.51 + t^6.64 + t^6.67 + 2*t^6.76 + 3*t^6.89 + 4*t^6.93 + 4*t^7.02 + t^7.05 + 2*t^7.15 + 8*t^7.18 + 5*t^7.31 + 8*t^7.44 + t^7.47 + 5*t^7.56 + 8*t^7.69 + 3*t^7.73 + 5*t^7.82 + t^7.85 + 3*t^7.95 + 6*t^7.98 - 6*t^8.07 + 3*t^8.11 - 2*t^8.2 + 8*t^8.24 + t^8.29 - 3*t^8.33 + 6*t^8.36 + 2*t^8.49 + t^8.58 + 5*t^8.62 + t^8.71 - 11*t^8.75 + 2*t^8.84 + 3*t^8.96 - t^4.44/y - t^6.51/y - t^6.93/y - (2*t^7.18)/y - t^7.31/y + (2*t^7.56)/y + (2*t^7.69)/y + (3*t^7.82)/y + (2*t^7.95)/y + (2*t^8.07)/y + (3*t^8.24)/y + (2*t^8.36)/y + (5*t^8.49)/y - t^8.58/y + (3*t^8.62)/y + (6*t^8.75)/y + (2*t^8.87)/y - t^4.44*y - t^6.51*y - t^6.93*y - 2*t^7.18*y - t^7.31*y + 2*t^7.56*y + 2*t^7.69*y + 3*t^7.82*y + 2*t^7.95*y + 2*t^8.07*y + 3*t^8.24*y + 2*t^8.36*y + 5*t^8.49*y - t^8.58*y + 3*t^8.62*y + 6*t^8.75*y + 2*t^8.87*y | g1^9*t^2.07 + t^2.49/g1^8 + (3*t^2.75)/g1^4 + t^2.87/g1^2 + 2*t^3. + g1^18*t^4.15 + t^4.18/g1^5 + (3*t^4.44)/g1 + g1*t^4.56 + 2*g1^3*t^4.69 + 3*g1^5*t^4.82 + 4*g1^7*t^4.95 + t^4.98/g1^16 + 2*g1^9*t^5.07 + (3*t^5.24)/g1^12 + t^5.36/g1^10 + (6*t^5.49)/g1^8 + (3*t^5.62)/g1^6 + (4*t^5.75)/g1^4 + (2*t^5.87)/g1^2 - 3*t^6. + g1^27*t^6.22 - 3*g1^4*t^6.25 + g1^8*t^6.51 + g1^10*t^6.64 + t^6.67/g1^13 + 2*g1^12*t^6.76 + 3*g1^14*t^6.89 + (4*t^6.93)/g1^9 + 4*g1^16*t^7.02 + t^7.05/g1^7 + 2*g1^18*t^7.15 + (8*t^7.18)/g1^5 + (5*t^7.31)/g1^3 + (8*t^7.44)/g1 + t^7.47/g1^24 + 5*g1*t^7.56 + 8*g1^3*t^7.69 + (3*t^7.73)/g1^20 + 5*g1^5*t^7.82 + t^7.85/g1^18 + 3*g1^7*t^7.95 + (6*t^7.98)/g1^16 - 6*g1^9*t^8.07 + (3*t^8.11)/g1^14 - 2*g1^11*t^8.2 + (8*t^8.24)/g1^12 + g1^36*t^8.29 - 3*g1^13*t^8.33 + (6*t^8.36)/g1^10 + (2*t^8.49)/g1^8 + g1^17*t^8.58 + (5*t^8.62)/g1^6 + g1^19*t^8.71 - (11*t^8.75)/g1^4 + 2*g1^21*t^8.84 + 3*g1^23*t^8.96 - t^4.44/(g1*y) - (g1^8*t^6.51)/y - t^6.93/(g1^9*y) - (2*t^7.18)/(g1^5*y) - t^7.31/(g1^3*y) + (2*g1*t^7.56)/y + (2*g1^3*t^7.69)/y + (3*g1^5*t^7.82)/y + (2*g1^7*t^7.95)/y + (2*g1^9*t^8.07)/y + (3*t^8.24)/(g1^12*y) + (2*t^8.36)/(g1^10*y) + (5*t^8.49)/(g1^8*y) - (g1^17*t^8.58)/y + (3*t^8.62)/(g1^6*y) + (6*t^8.75)/(g1^4*y) + (2*t^8.87)/(g1^2*y) - (t^4.44*y)/g1 - g1^8*t^6.51*y - (t^6.93*y)/g1^9 - (2*t^7.18*y)/g1^5 - (t^7.31*y)/g1^3 + 2*g1*t^7.56*y + 2*g1^3*t^7.69*y + 3*g1^5*t^7.82*y + 2*g1^7*t^7.95*y + 2*g1^9*t^8.07*y + (3*t^8.24*y)/g1^12 + (2*t^8.36*y)/g1^10 + (5*t^8.49*y)/g1^8 - g1^17*t^8.58*y + (3*t^8.62*y)/g1^6 + (6*t^8.75*y)/g1^4 + (2*t^8.87*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
53977 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3^2$ + $ M_1M_2$ + $ M_2M_5$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ | 0.7155 | 0.8872 | 0.8065 | [X:[], M:[0.9105, 1.0895, 1.0, 0.821, 0.9105, 0.9105], q:[0.5, 0.5895], qb:[0.4105, 0.5895], phi:[0.4776]] | t^2.46 + 3*t^2.73 + t^2.87 + 2*t^3. + t^3.9 + t^4.16 + 3*t^4.43 + 2*t^4.7 + t^4.93 + 3*t^4.97 + 3*t^5.19 + t^5.33 + 6*t^5.46 + 3*t^5.6 + 4*t^5.73 + 2*t^5.87 - 3*t^6. - t^4.43/y - t^4.43*y | detail |