Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56441 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_4\phi_1q_1^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_1q_2$ + $ M_1M_7$ 0.7134 0.9084 0.7853 [X:[], M:[1.1639, 1.0168, 0.8361, 0.7759, 0.7759, 0.7157, 0.8361], q:[0.388, 0.4482], qb:[0.5952, 0.7759], phi:[0.4482]] [X:[], M:[[3], [-18], [-3], [2], [2], [7], [-3]], q:[[1], [-4]], qb:[[17], [2]], phi:[[-4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_4$, $ M_5$, $ M_3$, $ M_7$, $ \phi_1^2$, $ M_2$, $ q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_6$, $ M_5M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_3M_6$, $ M_6M_7$, $ M_3M_4$, $ M_3M_5$, $ M_4M_7$, $ M_5M_7$, $ M_6\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ M_3M_7$, $ M_7^2$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_6$, $ M_3\phi_1^2$, $ M_7\phi_1^2$, $ M_6q_2\tilde{q}_1$, $ M_2M_4$, $ M_2M_5$, $ \phi_1^4$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_2M_7$, $ M_3q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_2\phi_1^2$ . -3 t^2.15 + 2*t^2.33 + 2*t^2.51 + t^2.69 + t^3.05 + t^3.13 + t^4.03 + t^4.11 + 2*t^4.29 + 3*t^4.47 + 5*t^4.66 + 5*t^4.84 + t^4.92 + 5*t^5.02 + 3*t^5.2 + t^5.28 + 2*t^5.38 + 2*t^5.46 + t^5.56 + 2*t^5.64 + t^5.74 - 3*t^6. + t^6.1 + 2*t^6.26 + t^6.36 + 3*t^6.44 + t^6.54 + 5*t^6.62 + 8*t^6.8 - t^6.9 + 9*t^6.98 + t^7.06 + t^7.08 + 11*t^7.16 + 3*t^7.24 + 9*t^7.34 + 3*t^7.42 + 9*t^7.53 + 3*t^7.61 + 6*t^7.71 + 2*t^7.79 + 3*t^7.89 + 2*t^7.97 + t^8.05 + 4*t^8.07 - 2*t^8.15 + 2*t^8.25 - 7*t^8.33 + 2*t^8.41 + 3*t^8.43 - 7*t^8.51 + 5*t^8.59 + t^8.61 - 4*t^8.69 + 7*t^8.77 + t^8.79 - t^8.87 + 10*t^8.95 - t^4.34/y - t^6.49/y - (2*t^6.67)/y - t^6.85/y - t^7.03/y + t^7.29/y - t^7.39/y + (2*t^7.47)/y + (4*t^7.66)/y + (6*t^7.84)/y + (5*t^8.02)/y + (4*t^8.2)/y + t^8.28/y + (2*t^8.38)/y + (2*t^8.46)/y + (2*t^8.56)/y + t^8.64/y + t^8.74/y - t^8.82/y - t^4.34*y - t^6.49*y - 2*t^6.67*y - t^6.85*y - t^7.03*y + t^7.29*y - t^7.39*y + 2*t^7.47*y + 4*t^7.66*y + 6*t^7.84*y + 5*t^8.02*y + 4*t^8.2*y + t^8.28*y + 2*t^8.38*y + 2*t^8.46*y + 2*t^8.56*y + t^8.64*y + t^8.74*y - t^8.82*y g1^7*t^2.15 + 2*g1^2*t^2.33 + (2*t^2.51)/g1^3 + t^2.69/g1^8 + t^3.05/g1^18 + g1^13*t^3.13 + t^4.03/g1^12 + g1^19*t^4.11 + 2*g1^14*t^4.29 + 3*g1^9*t^4.47 + 5*g1^4*t^4.66 + (5*t^4.84)/g1 + g1^30*t^4.92 + (5*t^5.02)/g1^6 + (3*t^5.2)/g1^11 + g1^20*t^5.28 + (2*t^5.38)/g1^16 + 2*g1^15*t^5.46 + t^5.56/g1^21 + 2*g1^10*t^5.64 + t^5.74/g1^26 - 3*t^6. + t^6.1/g1^36 + 2*g1^26*t^6.26 + t^6.36/g1^10 + 3*g1^21*t^6.44 + t^6.54/g1^15 + 5*g1^16*t^6.62 + 8*g1^11*t^6.8 - t^6.9/g1^25 + 9*g1^6*t^6.98 + g1^37*t^7.06 + t^7.08/g1^30 + 11*g1*t^7.16 + 3*g1^32*t^7.24 + (9*t^7.34)/g1^4 + 3*g1^27*t^7.42 + (9*t^7.53)/g1^9 + 3*g1^22*t^7.61 + (6*t^7.71)/g1^14 + 2*g1^17*t^7.79 + (3*t^7.89)/g1^19 + 2*g1^12*t^7.97 + g1^43*t^8.05 + (4*t^8.07)/g1^24 - 2*g1^7*t^8.15 + (2*t^8.25)/g1^29 - 7*g1^2*t^8.33 + 2*g1^33*t^8.41 + (3*t^8.43)/g1^34 - (7*t^8.51)/g1^3 + 5*g1^28*t^8.59 + t^8.61/g1^39 - (4*t^8.69)/g1^8 + 7*g1^23*t^8.77 + t^8.79/g1^44 - t^8.87/g1^13 + 10*g1^18*t^8.95 - t^4.34/(g1^4*y) - (g1^3*t^6.49)/y - (2*t^6.67)/(g1^2*y) - t^6.85/(g1^7*y) - t^7.03/(g1^12*y) + (g1^14*t^7.29)/y - t^7.39/(g1^22*y) + (2*g1^9*t^7.47)/y + (4*g1^4*t^7.66)/y + (6*t^7.84)/(g1*y) + (5*t^8.02)/(g1^6*y) + (4*t^8.2)/(g1^11*y) + (g1^20*t^8.28)/y + (2*t^8.38)/(g1^16*y) + (2*g1^15*t^8.46)/y + (2*t^8.56)/(g1^21*y) + (g1^10*t^8.64)/y + t^8.74/(g1^26*y) - (g1^5*t^8.82)/y - (t^4.34*y)/g1^4 - g1^3*t^6.49*y - (2*t^6.67*y)/g1^2 - (t^6.85*y)/g1^7 - (t^7.03*y)/g1^12 + g1^14*t^7.29*y - (t^7.39*y)/g1^22 + 2*g1^9*t^7.47*y + 4*g1^4*t^7.66*y + (6*t^7.84*y)/g1 + (5*t^8.02*y)/g1^6 + (4*t^8.2*y)/g1^11 + g1^20*t^8.28*y + (2*t^8.38*y)/g1^16 + 2*g1^15*t^8.46*y + (2*t^8.56*y)/g1^21 + g1^10*t^8.64*y + (t^8.74*y)/g1^26 - g1^5*t^8.82*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
53383 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_4\phi_1q_1^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_1q_2$ 0.6993 0.8844 0.7907 [X:[], M:[1.1626, 1.0246, 0.8374, 0.775, 0.775, 0.7127], q:[0.3875, 0.4499], qb:[0.5879, 0.775], phi:[0.4499]] t^2.14 + 2*t^2.33 + t^2.51 + t^2.7 + t^3.07 + t^3.11 + t^3.49 + t^4.05 + t^4.09 + 2*t^4.28 + 3*t^4.46 + 4*t^4.65 + 3*t^4.84 + t^4.88 + 3*t^5.02 + 2*t^5.21 + t^5.25 + 2*t^5.4 + 2*t^5.44 + 2*t^5.63 + t^5.77 + 2*t^5.81 - 2*t^6. - t^4.35/y - t^4.35*y detail