Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56273 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{1}M_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ | 0.7086 | 0.875 | 0.8098 | [M:[0.9279, 1.0721, 1.0, 0.8558, 1.0361, 0.9639, 0.8918], q:[0.4459, 0.6262], qb:[0.482, 0.518], phi:[0.482]] | [M:[[-4], [4], [0], [-8], [2], [-2], [-6]], q:[[-3], [7]], qb:[[-1], [1]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{7}$, ${ }M_{1}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{1}M_{4}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{6}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{3}\phi_{1}^{2}$ | ${}$ | -2 | t^2.567 + t^2.675 + t^2.784 + 2*t^2.892 + t^3. + t^3.216 + t^4.121 + t^4.23 + 2*t^4.338 + t^4.446 + t^4.554 + t^4.662 + t^4.77 + t^4.879 + t^5.135 + t^5.203 + t^5.243 + 2*t^5.351 + 2*t^5.459 + 3*t^5.567 + 2*t^5.675 + 4*t^5.784 + t^5.892 - 2*t^6. - t^6.216 - t^6.325 - t^6.541 + t^6.689 + 2*t^6.797 + 3*t^6.905 + 5*t^7.013 + 5*t^7.121 + 5*t^7.23 + 4*t^7.338 + t^7.446 + 2*t^7.554 + t^7.702 + t^7.77 + t^7.81 + 2*t^7.918 - t^7.987 + 3*t^8.026 + 2*t^8.095 + 3*t^8.135 + 5*t^8.243 - t^8.311 + 5*t^8.351 + t^8.42 + 5*t^8.459 + 2*t^8.567 + 2*t^8.675 - t^8.784 - 6*t^8.892 - t^4.446/y - t^7.013/y - t^7.121/y - t^7.338/y + t^7.554/y + t^7.77/y + t^7.879/y + t^8.243/y + t^8.351/y + (3*t^8.459)/y + (3*t^8.567)/y + (3*t^8.675)/y + (3*t^8.784)/y + (3*t^8.892)/y - t^4.446*y - t^7.013*y - t^7.121*y - t^7.338*y + t^7.554*y + t^7.77*y + t^7.879*y + t^8.243*y + t^8.351*y + 3*t^8.459*y + 3*t^8.567*y + 3*t^8.675*y + 3*t^8.784*y + 3*t^8.892*y | t^2.567/g1^8 + t^2.675/g1^6 + t^2.784/g1^4 + (2*t^2.892)/g1^2 + t^3. + g1^4*t^3.216 + t^4.121/g1^7 + t^4.23/g1^5 + (2*t^4.338)/g1^3 + t^4.446/g1 + g1*t^4.554 + g1^3*t^4.662 + g1^5*t^4.77 + g1^7*t^4.879 + t^5.135/g1^16 + g1^13*t^5.203 + t^5.243/g1^14 + (2*t^5.351)/g1^12 + (2*t^5.459)/g1^10 + (3*t^5.567)/g1^8 + (2*t^5.675)/g1^6 + (4*t^5.784)/g1^4 + t^5.892/g1^2 - 2*t^6. - g1^4*t^6.216 - g1^6*t^6.325 - g1^10*t^6.541 + t^6.689/g1^15 + (2*t^6.797)/g1^13 + (3*t^6.905)/g1^11 + (5*t^7.013)/g1^9 + (5*t^7.121)/g1^7 + (5*t^7.23)/g1^5 + (4*t^7.338)/g1^3 + t^7.446/g1 + 2*g1*t^7.554 + t^7.702/g1^24 + g1^5*t^7.77 + t^7.81/g1^22 + (2*t^7.918)/g1^20 - g1^9*t^7.987 + (3*t^8.026)/g1^18 + 2*g1^11*t^8.095 + (3*t^8.135)/g1^16 + (5*t^8.243)/g1^14 - g1^15*t^8.311 + (5*t^8.351)/g1^12 + g1^17*t^8.42 + (5*t^8.459)/g1^10 + (2*t^8.567)/g1^8 + (2*t^8.675)/g1^6 - t^8.784/g1^4 - (6*t^8.892)/g1^2 - t^4.446/(g1*y) - t^7.013/(g1^9*y) - t^7.121/(g1^7*y) - t^7.338/(g1^3*y) + (g1*t^7.554)/y + (g1^5*t^7.77)/y + (g1^7*t^7.879)/y + t^8.243/(g1^14*y) + t^8.351/(g1^12*y) + (3*t^8.459)/(g1^10*y) + (3*t^8.567)/(g1^8*y) + (3*t^8.675)/(g1^6*y) + (3*t^8.784)/(g1^4*y) + (3*t^8.892)/(g1^2*y) - (t^4.446*y)/g1 - (t^7.013*y)/g1^9 - (t^7.121*y)/g1^7 - (t^7.338*y)/g1^3 + g1*t^7.554*y + g1^5*t^7.77*y + g1^7*t^7.879*y + (t^8.243*y)/g1^14 + (t^8.351*y)/g1^12 + (3*t^8.459*y)/g1^10 + (3*t^8.567*y)/g1^8 + (3*t^8.675*y)/g1^6 + (3*t^8.784*y)/g1^4 + (3*t^8.892*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
50976 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{1}M_{2}$ + ${ }M_{3}^{2}$ | 0.7001 | 0.8588 | 0.8152 | [M:[0.9479, 1.0521, 1.0, 0.8957, 1.0261, 0.9739], q:[0.4609, 0.5912], qb:[0.487, 0.513], phi:[0.487]] | t^2.687 + t^2.844 + 2*t^2.922 + t^3. + t^3.156 + t^3.235 + t^4.226 + t^4.304 + 2*t^4.383 + t^4.461 + t^4.539 + t^4.617 + t^4.696 + t^4.774 + t^5.008 + t^5.374 + t^5.531 + t^5.609 + t^5.687 + t^5.765 + 4*t^5.844 + t^5.922 - 2*t^6. - t^4.461/y - t^4.461*y | detail |