Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56252 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{7}$ + ${ }M_{1}M_{8}$ 0.6843 0.8549 0.8004 [M:[1.1636, 0.972, 0.8364, 0.7603, 0.8959, 0.7305, 1.2397, 0.8364], q:[0.3801, 0.4563], qb:[0.6479, 0.7835], phi:[0.4331]] [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [1, -15], [1, -5], [-2, 16], [-1, 7]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{3}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{7}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{8}$, ${ }M_{8}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}^{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}^{2}$, ${ }M_{6}M_{7}$ ${}$ -3 t^2.192 + 2*t^2.509 + t^2.598 + t^2.688 + t^2.916 + t^3.58 + t^3.719 + t^4.037 + t^4.294 + 2*t^4.383 + t^4.612 + 2*t^4.701 + t^4.79 + t^4.879 + 3*t^5.018 + 3*t^5.108 + t^5.186 + 2*t^5.197 + t^5.286 + t^5.375 + t^5.425 + t^5.514 + t^5.604 + t^5.832 + t^5.911 - 3*t^6. + t^6.089 + t^6.178 + 2*t^6.228 + t^6.268 + t^6.486 + 2*t^6.546 + t^6.575 + 2*t^6.635 + t^6.803 + 3*t^6.892 + t^6.953 + t^6.982 + t^7.071 + t^7.121 + t^7.16 + 3*t^7.21 + 3*t^7.299 + t^7.378 + 2*t^7.388 + t^7.478 + 3*t^7.528 + t^7.567 + 4*t^7.617 + t^7.696 + 4*t^7.706 + t^7.756 + 3*t^7.795 + 2*t^7.884 + t^7.934 + t^7.963 + t^7.974 + 2*t^8.024 + t^8.063 + t^8.073 + 2*t^8.113 - 4*t^8.192 + t^8.202 - t^8.281 + t^8.291 + t^8.331 + t^8.341 + t^8.42 + t^8.43 - 6*t^8.509 + t^8.519 - 2*t^8.598 + t^8.648 + t^8.677 - 2*t^8.688 + 3*t^8.738 + t^8.748 + 2*t^8.767 + t^8.777 + t^8.827 + t^8.866 + t^8.906 - 3*t^8.916 + t^8.955 - t^4.299/y - t^6.491/y - t^6.808/y - t^6.898/y - t^6.987/y - t^7.215/y + t^7.383/y + t^7.612/y + (3*t^7.701)/y + (2*t^7.79)/y + t^7.879/y + t^8.018/y + (4*t^8.108)/y + (2*t^8.197)/y + t^8.286/y + (2*t^8.425)/y + t^8.514/y + t^8.604/y - t^8.682/y + t^8.772/y + t^8.911/y - t^4.299*y - t^6.491*y - t^6.808*y - t^6.898*y - t^6.987*y - t^7.215*y + t^7.383*y + t^7.612*y + 3*t^7.701*y + 2*t^7.79*y + t^7.879*y + t^8.018*y + 4*t^8.108*y + 2*t^8.197*y + t^8.286*y + 2*t^8.425*y + t^8.514*y + t^8.604*y - t^8.682*y + t^8.772*y + t^8.911*y (g1*t^2.192)/g2^5 + (2*g2^7*t^2.509)/g1 + t^2.598/g2^4 + (g1*t^2.688)/g2^15 + (g2^8*t^2.916)/g1^2 + (g1^2*t^3.58)/g2^18 + (g2^16*t^3.719)/g1^2 + (g2^28*t^4.037)/g1^4 + g1*g2*t^4.294 + (2*g1^2*t^4.383)/g2^10 + (g2^13*t^4.612)/g1 + 2*g2^2*t^4.701 + (g1*t^4.79)/g2^9 + (g1^2*t^4.879)/g2^20 + (3*g2^14*t^5.018)/g1^2 + (3*g2^3*t^5.108)/g1 + (g1^2*t^5.186)/g2^2 + (2*t^5.197)/g2^8 + (g1*t^5.286)/g2^19 + (g1^2*t^5.375)/g2^30 + (g2^15*t^5.425)/g1^3 + (g2^4*t^5.514)/g1^2 + t^5.604/(g1*g2^7) + (g2^16*t^5.832)/g1^4 + (g2^11*t^5.911)/g1 - 3*t^6. + (g1*t^6.089)/g2^11 + (g1^2*t^6.178)/g2^22 + (2*g2^23*t^6.228)/g1^3 + (g1^3*t^6.268)/g2^33 + (g1^2*t^6.486)/g2^4 + (2*g2^35*t^6.546)/g1^5 + (g1^3*t^6.575)/g2^15 + (2*g2^24*t^6.635)/g1^4 + g2^8*t^6.803 + (3*g1*t^6.892)/g2^3 + (g2^36*t^6.953)/g1^6 + (g1^2*t^6.982)/g2^14 + (g1^3*t^7.071)/g2^25 + (g2^20*t^7.121)/g1^2 + (g1^4*t^7.16)/g2^36 + (3*g2^9*t^7.21)/g1 + (3*t^7.299)/g2^2 + (g1^3*t^7.378)/g2^7 + (2*g1*t^7.388)/g2^13 + (g1^2*t^7.478)/g2^24 + (3*g2^21*t^7.528)/g1^3 + (g1^3*t^7.567)/g2^35 + (4*g2^10*t^7.617)/g1^2 + g1*g2^5*t^7.696 + (4*t^7.706)/(g1*g2) + (g2^44*t^7.756)/g1^6 + (3*t^7.795)/g2^12 + (2*g1*t^7.884)/g2^23 + (g2^22*t^7.934)/g1^4 + (g1^4*t^7.963)/g2^28 + (g1^2*t^7.974)/g2^34 + (2*g2^11*t^8.024)/g1^3 + (g1^3*t^8.063)/g2^45 + (g2^56*t^8.073)/g1^8 + (2*t^8.113)/g1^2 - (4*g1*t^8.192)/g2^5 + t^8.202/(g1*g2^11) - (g1^2*t^8.281)/g2^16 + t^8.291/g2^22 + (g2^29*t^8.331)/g1^3 + (g2^23*t^8.341)/g1^5 + (g2^18*t^8.42)/g1^2 + (g2^12*t^8.43)/g1^4 - (6*g2^7*t^8.509)/g1 + (g2*t^8.519)/g1^3 - (2*t^8.598)/g2^4 + (g2^41*t^8.648)/g1^5 + (g1^3*t^8.677)/g2^9 - (2*g1*t^8.688)/g2^15 + (3*g2^30*t^8.738)/g1^4 + (g2^24*t^8.748)/g1^6 + (2*g1^4*t^8.767)/g2^20 + (g1^2*t^8.777)/g2^26 + (g2^19*t^8.827)/g1^3 + (g1^3*t^8.866)/g2^37 + g2^14*t^8.906 - (3*g2^8*t^8.916)/g1^2 + (g1^4*t^8.955)/g2^48 - t^4.299/(g2^2*y) - (g1*t^6.491)/(g2^7*y) - (g2^5*t^6.808)/(g1*y) - t^6.898/(g2^6*y) - (g1*t^6.987)/(g2^17*y) - (g2^6*t^7.215)/(g1^2*y) + (g1^2*t^7.383)/(g2^10*y) + (g2^13*t^7.612)/(g1*y) + (3*g2^2*t^7.701)/y + (2*g1*t^7.79)/(g2^9*y) + (g1^2*t^7.879)/(g2^20*y) + (g2^14*t^8.018)/(g1^2*y) + (4*g2^3*t^8.108)/(g1*y) + (2*t^8.197)/(g2^8*y) + (g1*t^8.286)/(g2^19*y) + (2*g2^15*t^8.425)/(g1^3*y) + (g2^4*t^8.514)/(g1^2*y) + t^8.604/(g1*g2^7*y) - (g1^2*t^8.682)/(g2^12*y) + (g1^3*t^8.772)/(g2^23*y) + (g2^11*t^8.911)/(g1*y) - (t^4.299*y)/g2^2 - (g1*t^6.491*y)/g2^7 - (g2^5*t^6.808*y)/g1 - (t^6.898*y)/g2^6 - (g1*t^6.987*y)/g2^17 - (g2^6*t^7.215*y)/g1^2 + (g1^2*t^7.383*y)/g2^10 + (g2^13*t^7.612*y)/g1 + 3*g2^2*t^7.701*y + (2*g1*t^7.79*y)/g2^9 + (g1^2*t^7.879*y)/g2^20 + (g2^14*t^8.018*y)/g1^2 + (4*g2^3*t^8.108*y)/g1 + (2*t^8.197*y)/g2^8 + (g1*t^8.286*y)/g2^19 + (2*g2^15*t^8.425*y)/g1^3 + (g2^4*t^8.514*y)/g1^2 + (t^8.604*y)/(g1*g2^7) - (g1^2*t^8.682*y)/g2^12 + (g1^3*t^8.772*y)/g2^23 + (g2^11*t^8.911*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
51119 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{7}$ 0.6704 0.8308 0.8069 [M:[1.1573, 0.9835, 0.8427, 0.7473, 0.8881, 0.7246, 1.2527], q:[0.3736, 0.4691], qb:[0.6428, 0.7836], phi:[0.4327]] t^2.174 + t^2.528 + t^2.596 + t^2.664 + t^2.951 + t^3.472 + t^3.54 + t^3.758 + t^4.112 + t^4.279 + 2*t^4.348 + t^4.634 + t^4.702 + t^4.77 + t^4.838 + t^5.056 + 2*t^5.124 + t^5.155 + t^5.192 + t^5.261 + t^5.329 + t^5.547 + t^5.615 + t^5.646 + t^5.901 + t^5.932 - 2*t^6. - t^4.298/y - t^4.298*y detail