Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56201 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{7}$ 0.669 0.8291 0.8069 [M:[1.171, 0.9737, 0.829, 0.7807, 0.9255, 0.7324, 1.2193], q:[0.3903, 0.4386], qb:[0.6359, 0.7807], phi:[0.4386]] [M:[[3], [-18], [-3], [2], [-13], [7], [-2]], q:[[1], [-4]], qb:[[17], [2]], phi:[[-4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{2}$, ${ }M_{1}$, ${ }M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{3}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{2}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{6}\phi_{1}q_{1}^{2}$ ${}$ -2 t^2.197 + t^2.487 + t^2.632 + t^2.776 + t^2.921 + t^3.513 + 2*t^3.658 + t^3.947 + t^4.25 + 2*t^4.395 + t^4.539 + t^4.684 + t^4.829 + 2*t^4.974 + 2*t^5.118 + t^5.131 + t^5.263 + t^5.408 + 2*t^5.553 + t^5.698 + t^5.71 + t^5.842 + t^5.855 - 2*t^6. + 2*t^6.145 + 2*t^6.29 + 3*t^6.434 + t^6.447 + 2*t^6.579 + t^6.592 + t^6.869 + t^6.882 + 2*t^7.026 + 4*t^7.171 + 3*t^7.316 + t^7.329 + 2*t^7.461 + 3*t^7.605 + 3*t^7.75 + t^7.763 + 3*t^7.895 + 2*t^7.908 + 2*t^8.04 + 2*t^8.053 + 2*t^8.184 - 2*t^8.197 + 2*t^8.329 + 2*t^8.474 + t^8.619 + 2*t^8.645 + t^8.764 - t^8.776 + 3*t^8.789 - t^8.921 - t^8.934 - t^4.316/y - t^6.513/y - t^6.947/y - t^7.092/y - t^7.237/y + t^7.395/y + t^7.539/y + (2*t^7.684)/y + t^7.829/y + t^7.974/y + (3*t^8.118)/y + t^8.263/y + (2*t^8.408)/y + t^8.553/y + t^8.698/y + (2*t^8.855)/y - t^4.316*y - t^6.513*y - t^6.947*y - t^7.092*y - t^7.237*y + t^7.395*y + t^7.539*y + 2*t^7.684*y + t^7.829*y + t^7.974*y + 3*t^8.118*y + t^8.263*y + 2*t^8.408*y + t^8.553*y + t^8.698*y + 2*t^8.855*y g1^7*t^2.197 + t^2.487/g1^3 + t^2.632/g1^8 + t^2.776/g1^13 + t^2.921/g1^18 + g1^3*t^3.513 + (2*t^3.658)/g1^2 + t^3.947/g1^12 + g1^19*t^4.25 + 2*g1^14*t^4.395 + g1^9*t^4.539 + g1^4*t^4.684 + t^4.829/g1 + (2*t^4.974)/g1^6 + (2*t^5.118)/g1^11 + g1^30*t^5.131 + t^5.263/g1^16 + t^5.408/g1^21 + (2*t^5.553)/g1^26 + t^5.698/g1^31 + g1^10*t^5.71 + t^5.842/g1^36 + g1^5*t^5.855 - 2*t^6. + (2*t^6.145)/g1^5 + (2*t^6.29)/g1^10 + (3*t^6.434)/g1^15 + g1^26*t^6.447 + (2*t^6.579)/g1^20 + g1^21*t^6.592 + t^6.869/g1^30 + g1^11*t^6.882 + 2*g1^6*t^7.026 + 4*g1*t^7.171 + (3*t^7.316)/g1^4 + g1^37*t^7.329 + (2*t^7.461)/g1^9 + (3*t^7.605)/g1^14 + (3*t^7.75)/g1^19 + g1^22*t^7.763 + (3*t^7.895)/g1^24 + 2*g1^17*t^7.908 + (2*t^8.04)/g1^29 + 2*g1^12*t^8.053 + (2*t^8.184)/g1^34 - 2*g1^7*t^8.197 + (2*t^8.329)/g1^39 + (2*t^8.474)/g1^44 + t^8.619/g1^49 + 2*g1^33*t^8.645 + t^8.764/g1^54 - t^8.776/g1^13 + 3*g1^28*t^8.789 - t^8.921/g1^18 - g1^23*t^8.934 - t^4.316/(g1^4*y) - (g1^3*t^6.513)/y - t^6.947/(g1^12*y) - t^7.092/(g1^17*y) - t^7.237/(g1^22*y) + (g1^14*t^7.395)/y + (g1^9*t^7.539)/y + (2*g1^4*t^7.684)/y + t^7.829/(g1*y) + t^7.974/(g1^6*y) + (3*t^8.118)/(g1^11*y) + t^8.263/(g1^16*y) + (2*t^8.408)/(g1^21*y) + t^8.553/(g1^26*y) + t^8.698/(g1^31*y) + (2*g1^5*t^8.855)/y - (t^4.316*y)/g1^4 - g1^3*t^6.513*y - (t^6.947*y)/g1^12 - (t^7.092*y)/g1^17 - (t^7.237*y)/g1^22 + g1^14*t^7.395*y + g1^9*t^7.539*y + 2*g1^4*t^7.684*y + (t^7.829*y)/g1 + (t^7.974*y)/g1^6 + (3*t^8.118*y)/g1^11 + (t^8.263*y)/g1^16 + (2*t^8.408*y)/g1^21 + (t^8.553*y)/g1^26 + (t^8.698*y)/g1^31 + 2*g1^5*t^8.855*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50984 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}q_{2}$ 0.6866 0.8604 0.798 [M:[1.1704, 0.9776, 0.8296, 0.7803, 0.9283, 0.7309], q:[0.3901, 0.4395], qb:[0.6323, 0.7803], phi:[0.4395]] t^2.193 + t^2.341 + t^2.489 + t^2.637 + t^2.785 + t^2.933 + t^3.511 + t^3.659 + t^3.955 + t^4.238 + 2*t^4.386 + 2*t^4.534 + 2*t^4.682 + 2*t^4.83 + 3*t^4.978 + t^5.112 + 3*t^5.126 + 2*t^5.274 + t^5.422 + 2*t^5.57 + t^5.704 + t^5.718 + t^5.852 + t^5.866 - t^6. - t^4.318/y - t^4.318*y detail