Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56161 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1^2$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_1^2$ + $ M_2M_3$ + $ M_7\tilde{q}_1\tilde{q}_2$ + $ M_8\phi_1q_1^2$ | 0.7465 | 0.934 | 0.7992 | [X:[], M:[1.0, 1.0, 1.0, 1.0817, 0.8367, 0.8367, 0.8367, 0.7042], q:[0.4183, 0.5817], qb:[0.5817, 0.5817], phi:[0.4592]] | [X:[], M:[[0, 0], [-2, 2], [2, -2], [2, 2], [-2, -6], [-6, -2], [-4, -4], [5, 5]], q:[[-2, -2], [2, 2]], qb:[[4, 0], [0, 4]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_8$, $ M_5$, $ M_7$, $ M_6$, $ M_1$, $ M_2$, $ M_3$, $ M_3$, $ M_2$, $ M_4$, $ M_8^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ M_5M_8$, $ M_7M_8$, $ M_6M_8$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5M_7$, $ M_5M_6$, $ M_7^2$, $ M_6M_7$, $ M_6^2$, $ M_3M_8$, $ M_1M_8$, $ M_2M_8$, $ M_4M_8$, $ M_2M_6$, $ M_3M_5$, $ M_1M_5$, $ M_3M_7$, $ M_2M_5$, $ M_3M_6$, $ M_1M_7$, $ M_1M_6$, $ M_2M_7$, $ M_4M_6$, $ M_4M_5$, $ M_4M_7$ | $M_1M_2$, $ M_2^2$, $ M_1M_3$, $ M_3^2$ | -4 | t^2.11 + 3*t^2.51 + 3*t^3. + t^3.24 + t^4.22 + 3*t^4.38 + 3*t^4.62 + 6*t^4.87 + 6*t^5.02 + 3*t^5.11 + t^5.36 + 6*t^5.51 + 3*t^5.76 - 4*t^6. + 3*t^6.24 + t^6.34 + 3*t^6.73 + 6*t^6.89 + 6*t^6.98 + 5*t^7.13 + 3*t^7.22 + 15*t^7.38 + t^7.47 + 10*t^7.53 + 6*t^7.62 + 9*t^7.87 + 9*t^8.02 - 4*t^8.11 + 6*t^8.27 + t^8.45 - 15*t^8.51 + 6*t^8.76 + 3*t^8.85 - t^4.38/y - t^6.49/y - (3*t^6.89)/y + (3*t^7.62)/y + (3*t^7.87)/y + (3*t^8.02)/y + (3*t^8.11)/y + t^8.27/y + t^8.36/y + (9*t^8.51)/y - t^8.6/y + (3*t^8.76)/y - t^4.38*y - t^6.49*y - 3*t^6.89*y + 3*t^7.62*y + 3*t^7.87*y + 3*t^8.02*y + 3*t^8.11*y + t^8.27*y + t^8.36*y + 9*t^8.51*y - t^8.6*y + 3*t^8.76*y | g1^5*g2^5*t^2.11 + t^2.51/(g1^2*g2^6) + t^2.51/(g1^4*g2^4) + t^2.51/(g1^6*g2^2) + t^3. + (g1^2*t^3.)/g2^2 + (g2^2*t^3.)/g1^2 + g1^2*g2^2*t^3.24 + g1^10*g2^10*t^4.22 + (g1*t^4.38)/g2^3 + t^4.38/(g1*g2) + (g2*t^4.38)/g1^3 + (g1^3*t^4.62)/g2 + g1*g2*t^4.62 + (g2^3*t^4.62)/g1 + (g1^7*t^4.87)/g2 + g1^5*g2*t^4.87 + 2*g1^3*g2^3*t^4.87 + g1*g2^5*t^4.87 + (g2^7*t^4.87)/g1 + t^5.02/(g1^4*g2^12) + t^5.02/(g1^6*g2^10) + (2*t^5.02)/(g1^8*g2^8) + t^5.02/(g1^10*g2^6) + t^5.02/(g1^12*g2^4) + g1^7*g2^3*t^5.11 + g1^5*g2^5*t^5.11 + g1^3*g2^7*t^5.11 + g1^7*g2^7*t^5.36 + t^5.51/g1^8 + t^5.51/g2^8 + t^5.51/(g1^2*g2^6) + (2*t^5.51)/(g1^4*g2^4) + t^5.51/(g1^6*g2^2) + t^5.76/g1^4 + t^5.76/g2^4 + t^5.76/(g1^2*g2^2) - 2*t^6. - (g1^2*t^6.)/g2^2 - (g2^2*t^6.)/g1^2 + g1^4*t^6.24 + g1^2*g2^2*t^6.24 + g2^4*t^6.24 + g1^15*g2^15*t^6.34 + g1^8*g2^4*t^6.73 + g1^6*g2^6*t^6.73 + g1^4*g2^8*t^6.73 + t^6.89/(g1*g2^9) + t^6.89/(g1^3*g2^7) + (2*t^6.89)/(g1^5*g2^5) + t^6.89/(g1^7*g2^3) + t^6.89/(g1^9*g2) + g1^12*g2^4*t^6.98 + g1^10*g2^6*t^6.98 + 2*g1^8*g2^8*t^6.98 + g1^6*g2^10*t^6.98 + g1^4*g2^12*t^6.98 + (g1*t^7.13)/g2^7 + t^7.13/(g1*g2^5) + t^7.13/(g1^3*g2^3) + t^7.13/(g1^5*g2) + (g2*t^7.13)/g1^7 + g1^12*g2^8*t^7.22 + g1^10*g2^10*t^7.22 + g1^8*g2^12*t^7.22 + (g1^5*t^7.38)/g2^7 + (2*g1^3*t^7.38)/g2^5 + (3*g1*t^7.38)/g2^3 + (3*t^7.38)/(g1*g2) + (3*g2*t^7.38)/g1^3 + (2*g2^3*t^7.38)/g1^5 + (g2^5*t^7.38)/g1^7 + g1^12*g2^12*t^7.47 + t^7.53/(g1^6*g2^18) + t^7.53/(g1^8*g2^16) + (2*t^7.53)/(g1^10*g2^14) + (2*t^7.53)/(g1^12*g2^12) + (2*t^7.53)/(g1^14*g2^10) + t^7.53/(g1^16*g2^8) + t^7.53/(g1^18*g2^6) + (g1^5*t^7.62)/g2^3 + (g1^3*t^7.62)/g2 + 2*g1*g2*t^7.62 + (g2^3*t^7.62)/g1 + (g2^5*t^7.62)/g1^3 + (g1^9*t^7.87)/g2^3 + (g1^7*t^7.87)/g2 + 2*g1^5*g2*t^7.87 + g1^3*g2^3*t^7.87 + 2*g1*g2^5*t^7.87 + (g2^7*t^7.87)/g1 + (g2^9*t^7.87)/g1^3 + t^8.02/(g1^2*g2^14) + t^8.02/(g1^4*g2^12) + (2*t^8.02)/(g1^6*g2^10) + t^8.02/(g1^8*g2^8) + (2*t^8.02)/(g1^10*g2^6) + t^8.02/(g1^12*g2^4) + t^8.02/(g1^14*g2^2) - g1^7*g2^3*t^8.11 - 2*g1^5*g2^5*t^8.11 - g1^3*g2^7*t^8.11 + t^8.27/(g1^2*g2^10) + t^8.27/(g1^4*g2^8) + (2*t^8.27)/(g1^6*g2^6) + t^8.27/(g1^8*g2^4) + t^8.27/(g1^10*g2^2) + g1^20*g2^20*t^8.45 - t^8.51/g1^8 - t^8.51/g2^8 - (4*t^8.51)/(g1^2*g2^6) - (5*t^8.51)/(g1^4*g2^4) - (4*t^8.51)/(g1^6*g2^2) + t^8.76/g1^4 + (g1^2*t^8.76)/g2^6 + t^8.76/g2^4 + (2*t^8.76)/(g1^2*g2^2) + (g2^2*t^8.76)/g1^6 + g1^13*g2^9*t^8.85 + g1^11*g2^11*t^8.85 + g1^9*g2^13*t^8.85 - t^4.38/(g1*g2*y) - (g1^4*g2^4*t^6.49)/y - t^6.89/(g1^3*g2^7*y) - t^6.89/(g1^5*g2^5*y) - t^6.89/(g1^7*g2^3*y) + (g1^3*t^7.62)/(g2*y) + (g1*g2*t^7.62)/y + (g2^3*t^7.62)/(g1*y) + (g1^5*g2*t^7.87)/y + (g1^3*g2^3*t^7.87)/y + (g1*g2^5*t^7.87)/y + t^8.02/(g1^6*g2^10*y) + t^8.02/(g1^8*g2^8*y) + t^8.02/(g1^10*g2^6*y) + (g1^7*g2^3*t^8.11)/y + (g1^5*g2^5*t^8.11)/y + (g1^3*g2^7*t^8.11)/y + t^8.27/(g1^6*g2^6*y) + (g1^7*g2^7*t^8.36)/y + t^8.51/(g1^8*y) + t^8.51/(g2^8*y) + (2*t^8.51)/(g1^2*g2^6*y) + (3*t^8.51)/(g1^4*g2^4*y) + (2*t^8.51)/(g1^6*g2^2*y) - (g1^9*g2^9*t^8.6)/y + t^8.76/(g1^4*y) + t^8.76/(g2^4*y) + t^8.76/(g1^2*g2^2*y) - (t^4.38*y)/(g1*g2) - g1^4*g2^4*t^6.49*y - (t^6.89*y)/(g1^3*g2^7) - (t^6.89*y)/(g1^5*g2^5) - (t^6.89*y)/(g1^7*g2^3) + (g1^3*t^7.62*y)/g2 + g1*g2*t^7.62*y + (g2^3*t^7.62*y)/g1 + g1^5*g2*t^7.87*y + g1^3*g2^3*t^7.87*y + g1*g2^5*t^7.87*y + (t^8.02*y)/(g1^6*g2^10) + (t^8.02*y)/(g1^8*g2^8) + (t^8.02*y)/(g1^10*g2^6) + g1^7*g2^3*t^8.11*y + g1^5*g2^5*t^8.11*y + g1^3*g2^7*t^8.11*y + (t^8.27*y)/(g1^6*g2^6) + g1^7*g2^7*t^8.36*y + (t^8.51*y)/g1^8 + (t^8.51*y)/g2^8 + (2*t^8.51*y)/(g1^2*g2^6) + (3*t^8.51*y)/(g1^4*g2^4) + (2*t^8.51*y)/(g1^6*g2^2) - g1^9*g2^9*t^8.6*y + (t^8.76*y)/g1^4 + (t^8.76*y)/g2^4 + (t^8.76*y)/(g1^2*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
50878 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1^2$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_1^2$ + $ M_2M_3$ + $ M_7\tilde{q}_1\tilde{q}_2$ | 0.7261 | 0.8959 | 0.8105 | [X:[], M:[1.0, 1.0, 1.0, 1.0866, 0.8268, 0.8268, 0.8268], q:[0.4134, 0.5866], qb:[0.5866, 0.5866], phi:[0.4567]] | 3*t^2.48 + 3*t^3. + t^3.26 + t^3.85 + 3*t^4.37 + 6*t^4.89 + 6*t^4.96 + 6*t^5.48 + 3*t^5.74 - 4*t^6. - t^4.37/y - t^4.37*y | detail |