Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56159 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{7}\phi_{1}^{2}$ 0.6709 0.832 0.8064 [M:[1.117, 1.0, 0.883, 0.6936, 0.8106, 0.883, 1.1532], q:[0.3468, 0.5362], qb:[0.6532, 0.7702], phi:[0.4234]] [M:[[5], [0], [-5], [4], [9], [-5], [-2]], q:[[2], [-7]], qb:[[-2], [3]], phi:[[1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{1}$, ${ }M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ ${}M_{4}\phi_{1}q_{1}q_{2}$ -1 t^2.081 + t^2.432 + 2*t^2.649 + t^3. + t^3.351 + t^3.46 + t^3.919 + t^4.162 + 2*t^4.27 + t^4.487 + t^4.513 + t^4.621 + t^4.73 + t^4.838 + t^4.864 + 2*t^5.081 + 2*t^5.189 + 2*t^5.298 + t^5.432 + 2*t^5.54 + t^5.783 + 2*t^5.891 - t^6. + 2*t^6.109 + t^6.242 + t^6.351 + t^6.46 + t^6.568 + t^6.593 + 2*t^6.702 + t^6.811 + 3*t^6.919 + t^6.944 + t^7.053 + 2*t^7.136 + t^7.162 + 3*t^7.27 + t^7.295 + t^7.379 + 2*t^7.487 + 2*t^7.513 + 4*t^7.621 + t^7.73 + 3*t^7.838 + t^7.864 + 2*t^7.947 + 3*t^7.972 - 3*t^8.081 + 3*t^8.189 + t^8.215 - t^8.298 + 3*t^8.323 + t^8.407 - 2*t^8.432 + 6*t^8.54 - 5*t^8.649 + t^8.674 + 3*t^8.758 + t^8.783 + 3*t^8.891 + t^8.975 - t^4.27/y - t^6.351/y - t^6.702/y - t^6.919/y + t^7.513/y + t^7.621/y + (2*t^7.73)/y + t^7.838/y + (3*t^8.081)/y + t^8.189/y + t^8.298/y + t^8.432/y + t^8.54/y + (2*t^8.649)/y + t^8.891/y - t^4.27*y - t^6.351*y - t^6.702*y - t^6.919*y + t^7.513*y + t^7.621*y + 2*t^7.73*y + t^7.838*y + 3*t^8.081*y + t^8.189*y + t^8.298*y + t^8.432*y + t^8.54*y + 2*t^8.649*y + t^8.891*y g1^4*t^2.081 + g1^9*t^2.432 + (2*t^2.649)/g1^5 + t^3. + g1^5*t^3.351 + t^3.46/g1^2 + t^3.919/g1^4 + g1^8*t^4.162 + 2*g1*t^4.27 + t^4.487/g1^13 + g1^13*t^4.513 + g1^6*t^4.621 + t^4.73/g1 + t^4.838/g1^8 + g1^18*t^4.864 + 2*g1^4*t^5.081 + (2*t^5.189)/g1^3 + (2*t^5.298)/g1^10 + g1^9*t^5.432 + 2*g1^2*t^5.54 + g1^14*t^5.783 + 2*g1^7*t^5.891 - t^6. + (2*t^6.109)/g1^7 + g1^12*t^6.242 + g1^5*t^6.351 + t^6.46/g1^2 + t^6.568/g1^9 + g1^17*t^6.593 + 2*g1^10*t^6.702 + g1^3*t^6.811 + (3*t^6.919)/g1^4 + g1^22*t^6.944 + g1^15*t^7.053 + (2*t^7.136)/g1^18 + g1^8*t^7.162 + 3*g1*t^7.27 + g1^27*t^7.295 + t^7.379/g1^6 + (2*t^7.487)/g1^13 + 2*g1^13*t^7.513 + 4*g1^6*t^7.621 + t^7.73/g1 + (3*t^7.838)/g1^8 + g1^18*t^7.864 + (2*t^7.947)/g1^15 + 3*g1^11*t^7.972 - 3*g1^4*t^8.081 + (3*t^8.189)/g1^3 + g1^23*t^8.215 - t^8.298/g1^10 + 3*g1^16*t^8.323 + t^8.407/g1^17 - 2*g1^9*t^8.432 + 6*g1^2*t^8.54 - (5*t^8.649)/g1^5 + g1^21*t^8.674 + (3*t^8.758)/g1^12 + g1^14*t^8.783 + 3*g1^7*t^8.891 + t^8.975/g1^26 - (g1*t^4.27)/y - (g1^5*t^6.351)/y - (g1^10*t^6.702)/y - t^6.919/(g1^4*y) + (g1^13*t^7.513)/y + (g1^6*t^7.621)/y + (2*t^7.73)/(g1*y) + t^7.838/(g1^8*y) + (3*g1^4*t^8.081)/y + t^8.189/(g1^3*y) + t^8.298/(g1^10*y) + (g1^9*t^8.432)/y + (g1^2*t^8.54)/y + (2*t^8.649)/(g1^5*y) + (g1^7*t^8.891)/y - g1*t^4.27*y - g1^5*t^6.351*y - g1^10*t^6.702*y - (t^6.919*y)/g1^4 + g1^13*t^7.513*y + g1^6*t^7.621*y + (2*t^7.73*y)/g1 + (t^7.838*y)/g1^8 + 3*g1^4*t^8.081*y + (t^8.189*y)/g1^3 + (t^8.298*y)/g1^10 + g1^9*t^8.432*y + g1^2*t^8.54*y + (2*t^8.649*y)/g1^5 + g1^7*t^8.891*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50850 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{1}M_{6}$ 0.6844 0.8552 0.8003 [M:[1.1117, 1.0, 0.8883, 0.6894, 0.8011, 0.8883], q:[0.3447, 0.5436], qb:[0.6553, 0.767], phi:[0.4223]] t^2.068 + t^2.403 + t^2.534 + 2*t^2.665 + t^3. + t^3.335 + t^3.932 + t^4.136 + 2*t^4.267 + t^4.471 + t^4.529 + 2*t^4.602 + t^4.733 + t^4.806 + t^4.864 + t^4.937 + 3*t^5.068 + 4*t^5.199 + 2*t^5.33 + t^5.403 + 2*t^5.534 + t^5.738 + 2*t^5.869 - t^6. - t^4.267/y - t^4.267*y detail