Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56108 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1q_2\tilde{q}_1$ + $ M_2q_1\tilde{q}_2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_4q_1q_2$ + $ M_1M_5$ + $ M_6q_1\tilde{q}_1$ + $ M_7q_1\tilde{q}_2$ 0.6989 0.9192 0.7603 [X:[], M:[1.1378, 0.75, 0.7244, 0.8878, 0.8622, 0.8622, 0.75], q:[0.75, 0.3622], qb:[0.3878, 0.5], phi:[0.5]] [X:[], M:[[1], [0], [-2], [1], [-1], [-1], [0]], q:[[0], [-1]], qb:[[1], [0]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_2$, $ M_7$, $ q_2\tilde{q}_1$, $ M_5$, $ M_6$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_2M_3$, $ M_3M_7$, $ M_3q_2\tilde{q}_1$, $ M_2^2$, $ M_2M_7$, $ M_7^2$, $ M_2q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_5$, $ M_3M_6$, $ M_3M_4$, $ M_2M_5$, $ M_2M_6$, $ M_5M_7$, $ M_6M_7$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2M_4$, $ M_4M_7$, $ M_4q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_3\phi_1^2$, $ M_4M_5$, $ M_4M_6$, $ M_2\phi_1^2$, $ M_7\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_4\phi_1^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1q_2^2$, $ M_7\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$ . -3 t^2.17 + 3*t^2.25 + 2*t^2.59 + 2*t^2.66 + t^3. + t^3.67 + t^4.09 + t^4.16 + t^4.35 + 3*t^4.42 + 7*t^4.5 + 2*t^4.76 + 8*t^4.84 + 6*t^4.91 + 4*t^5.17 + 7*t^5.25 + 3*t^5.33 + t^5.59 + t^5.66 + t^5.85 + 2*t^5.92 - 3*t^6. - t^6.08 + 3*t^6.26 + 3*t^6.34 + t^6.52 + 3*t^6.6 + 9*t^6.67 + 13*t^6.75 + t^6.83 + 2*t^6.93 + 8*t^7.01 + 17*t^7.09 + 11*t^7.16 + 5*t^7.35 + 14*t^7.42 + 16*t^7.5 + 7*t^7.58 + 6*t^7.76 + 7*t^7.84 + 5*t^7.91 + 4*t^7.99 + t^8.02 + 2*t^8.1 + 2*t^8.17 - 11*t^8.25 - 2*t^8.33 + 3*t^8.43 + 7*t^8.51 - 5*t^8.59 - 11*t^8.66 + t^8.69 - 2*t^8.74 + 3*t^8.77 + 12*t^8.85 + 16*t^8.92 - t^4.5/y - t^6.67/y - (2*t^6.75)/y - t^7.09/y - t^7.16/y + (3*t^7.42)/y + (3*t^7.5)/y + (2*t^7.76)/y + (9*t^7.84)/y + (7*t^7.91)/y + (2*t^8.17)/y + (9*t^8.25)/y + (2*t^8.33)/y + (2*t^8.59)/y + (2*t^8.66)/y + t^8.92/y - t^4.5*y - t^6.67*y - 2*t^6.75*y - t^7.09*y - t^7.16*y + 3*t^7.42*y + 3*t^7.5*y + 2*t^7.76*y + 9*t^7.84*y + 7*t^7.91*y + 2*t^8.17*y + 9*t^8.25*y + 2*t^8.33*y + 2*t^8.59*y + 2*t^8.66*y + t^8.92*y t^2.17/g1^2 + 3*t^2.25 + (2*t^2.59)/g1 + 2*g1*t^2.66 + t^3. + t^3.67/g1^2 + t^4.09/g1 + g1*t^4.16 + t^4.35/g1^4 + (3*t^4.42)/g1^2 + 7*t^4.5 + (2*t^4.76)/g1^3 + (8*t^4.84)/g1 + 6*g1*t^4.91 + (4*t^5.17)/g1^2 + 7*t^5.25 + 3*g1^2*t^5.33 + t^5.59/g1 + g1*t^5.66 + t^5.85/g1^4 + (2*t^5.92)/g1^2 - 3*t^6. - g1^2*t^6.08 + (3*t^6.26)/g1^3 + (3*t^6.34)/g1 + t^6.52/g1^6 + (3*t^6.6)/g1^4 + (9*t^6.67)/g1^2 + 13*t^6.75 + g1^2*t^6.83 + (2*t^6.93)/g1^5 + (8*t^7.01)/g1^3 + (17*t^7.09)/g1 + 11*g1*t^7.16 + (5*t^7.35)/g1^4 + (14*t^7.42)/g1^2 + 16*t^7.5 + 7*g1^2*t^7.58 + (6*t^7.76)/g1^3 + (7*t^7.84)/g1 + 5*g1*t^7.91 + 4*g1^3*t^7.99 + t^8.02/g1^6 + (2*t^8.1)/g1^4 + (2*t^8.17)/g1^2 - 11*t^8.25 - 2*g1^2*t^8.33 + (3*t^8.43)/g1^5 + (7*t^8.51)/g1^3 - (5*t^8.59)/g1 - 11*g1*t^8.66 + t^8.69/g1^8 - 2*g1^3*t^8.74 + (3*t^8.77)/g1^6 + (12*t^8.85)/g1^4 + (16*t^8.92)/g1^2 - t^4.5/y - t^6.67/(g1^2*y) - (2*t^6.75)/y - t^7.09/(g1*y) - (g1*t^7.16)/y + (3*t^7.42)/(g1^2*y) + (3*t^7.5)/y + (2*t^7.76)/(g1^3*y) + (9*t^7.84)/(g1*y) + (7*g1*t^7.91)/y + (2*t^8.17)/(g1^2*y) + (9*t^8.25)/y + (2*g1^2*t^8.33)/y + (2*t^8.59)/(g1*y) + (2*g1*t^8.66)/y + t^8.92/(g1^2*y) - t^4.5*y - (t^6.67*y)/g1^2 - 2*t^6.75*y - (t^7.09*y)/g1 - g1*t^7.16*y + (3*t^7.42*y)/g1^2 + 3*t^7.5*y + (2*t^7.76*y)/g1^3 + (9*t^7.84*y)/g1 + 7*g1*t^7.91*y + (2*t^8.17*y)/g1^2 + 9*t^8.25*y + 2*g1^2*t^8.33*y + (2*t^8.59*y)/g1 + 2*g1*t^8.66*y + (t^8.92*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50953 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1q_2\tilde{q}_1$ + $ M_2q_1\tilde{q}_2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_4q_1q_2$ + $ M_1M_5$ + $ M_6q_1\tilde{q}_1$ 0.6798 0.8846 0.7686 [X:[], M:[1.1378, 0.75, 0.7244, 0.8878, 0.8622, 0.8622], q:[0.75, 0.3622], qb:[0.3878, 0.5], phi:[0.5]] t^2.17 + 2*t^2.25 + 2*t^2.59 + 2*t^2.66 + t^3. + t^3.67 + t^3.75 + t^4.09 + t^4.16 + t^4.35 + 2*t^4.42 + 4*t^4.5 + 2*t^4.76 + 6*t^4.84 + 4*t^4.91 + 4*t^5.17 + 6*t^5.25 + 3*t^5.33 + t^5.59 + t^5.66 + t^5.85 + 2*t^5.92 - t^6. - t^4.5/y - t^4.5*y detail