Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56083 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{7}\phi_{1}^{2}$ 0.6548 0.8208 0.7978 [M:[1.1522, 0.7283, 0.8478, 0.808, 0.6885, 0.808, 1.2318], q:[0.404, 0.4438], qb:[0.8677, 0.7482], phi:[0.3841]] [M:[[12], [18], [-12], [-2], [28], [-2], [-8]], q:[[-1], [-11]], qb:[[-17], [13]], phi:[[4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{5}\phi_{1}q_{2}^{2}$ ${}$ -1 t^2.066 + t^2.185 + 2*t^2.424 + t^2.543 + t^3.457 + 2*t^3.696 + t^3.815 + t^4.131 + t^4.251 + t^4.37 + 2*t^4.489 + 3*t^4.609 + t^4.728 + 4*t^4.848 + 2*t^4.967 + t^5.087 + t^5.522 + t^5.642 + t^5.761 + 3*t^5.881 - t^6. + 2*t^6.119 + t^6.197 + 3*t^6.239 + t^6.316 + t^6.358 + t^6.436 + 3*t^6.555 + 3*t^6.675 + 3*t^6.794 + 5*t^6.913 + 4*t^7.033 + 2*t^7.152 + 4*t^7.272 + 3*t^7.391 + 2*t^7.511 + t^7.588 + t^7.63 + t^7.707 + 2*t^7.827 + 2*t^7.946 + t^8.066 - t^8.185 + t^8.262 + 4*t^8.304 + t^8.382 - 4*t^8.424 + t^8.501 + t^8.543 + 3*t^8.621 + 2*t^8.663 + 4*t^8.74 + 2*t^8.782 + 3*t^8.86 + t^8.902 + 7*t^8.979 - t^4.152/y - t^6.218/y - t^6.337/y - (2*t^6.576)/y + t^7.251/y + (2*t^7.489)/y + (3*t^7.609)/y + (3*t^7.728)/y + t^7.848/y + (3*t^7.967)/y + t^8.087/y - t^8.283/y - t^8.403/y - t^8.642/y + (5*t^8.881)/y - t^4.152*y - t^6.218*y - t^6.337*y - 2*t^6.576*y + t^7.251*y + 2*t^7.489*y + 3*t^7.609*y + 3*t^7.728*y + t^7.848*y + 3*t^7.967*y + t^8.087*y - t^8.283*y - t^8.403*y - t^8.642*y + 5*t^8.881*y g1^28*t^2.066 + g1^18*t^2.185 + (2*t^2.424)/g1^2 + t^2.543/g1^12 + g1^12*t^3.457 + (2*t^3.696)/g1^8 + t^3.815/g1^18 + g1^56*t^4.131 + g1^46*t^4.251 + g1^36*t^4.37 + 2*g1^26*t^4.489 + 3*g1^16*t^4.609 + g1^6*t^4.728 + (4*t^4.848)/g1^4 + (2*t^4.967)/g1^14 + t^5.087/g1^24 + g1^40*t^5.522 + g1^30*t^5.642 + g1^20*t^5.761 + 3*g1^10*t^5.881 - t^6. + (2*t^6.119)/g1^10 + g1^84*t^6.197 + (3*t^6.239)/g1^20 + g1^74*t^6.316 + t^6.358/g1^30 + g1^64*t^6.436 + 3*g1^54*t^6.555 + 3*g1^44*t^6.675 + 3*g1^34*t^6.794 + 5*g1^24*t^6.913 + 4*g1^14*t^7.033 + 2*g1^4*t^7.152 + (4*t^7.272)/g1^6 + (3*t^7.391)/g1^16 + (2*t^7.511)/g1^26 + g1^68*t^7.588 + t^7.63/g1^36 + g1^58*t^7.707 + 2*g1^48*t^7.827 + 2*g1^38*t^7.946 + g1^28*t^8.066 - g1^18*t^8.185 + g1^112*t^8.262 + 4*g1^8*t^8.304 + g1^102*t^8.382 - (4*t^8.424)/g1^2 + g1^92*t^8.501 + t^8.543/g1^12 + 3*g1^82*t^8.621 + (2*t^8.663)/g1^22 + 4*g1^72*t^8.74 + (2*t^8.782)/g1^32 + 3*g1^62*t^8.86 + t^8.902/g1^42 + 7*g1^52*t^8.979 - (g1^4*t^4.152)/y - (g1^32*t^6.218)/y - (g1^22*t^6.337)/y - (2*g1^2*t^6.576)/y + (g1^46*t^7.251)/y + (2*g1^26*t^7.489)/y + (3*g1^16*t^7.609)/y + (3*g1^6*t^7.728)/y + t^7.848/(g1^4*y) + (3*t^7.967)/(g1^14*y) + t^8.087/(g1^24*y) - (g1^60*t^8.283)/y - (g1^50*t^8.403)/y - (g1^30*t^8.642)/y + (5*g1^10*t^8.881)/y - g1^4*t^4.152*y - g1^32*t^6.218*y - g1^22*t^6.337*y - 2*g1^2*t^6.576*y + g1^46*t^7.251*y + 2*g1^26*t^7.489*y + 3*g1^16*t^7.609*y + 3*g1^6*t^7.728*y + (t^7.848*y)/g1^4 + (3*t^7.967*y)/g1^14 + (t^8.087*y)/g1^24 - g1^60*t^8.283*y - g1^50*t^8.403*y - g1^30*t^8.642*y + 5*g1^10*t^8.881*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50867 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ 0.6731 0.854 0.7881 [M:[1.1481, 0.7221, 0.8519, 0.8087, 0.6789, 0.8087], q:[0.4043, 0.4476], qb:[0.8736, 0.7438], phi:[0.3827]] t^2.037 + t^2.166 + t^2.296 + 2*t^2.426 + t^2.556 + t^3.444 + t^3.704 + t^3.834 + t^4.073 + t^4.203 + 2*t^4.333 + 3*t^4.463 + 4*t^4.592 + 3*t^4.722 + 5*t^4.852 + 2*t^4.982 + t^5.112 + t^5.481 + t^5.611 + t^5.74 + 2*t^5.87 - t^4.148/y - t^4.148*y detail