Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56067 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{6}$ + ${ }M_{5}M_{7}$ 0.6975 0.8568 0.814 [M:[1.0571, 1.0, 0.9429, 0.9714, 1.0286, 0.9429, 0.9714], q:[0.4857, 0.4572], qb:[0.5143, 0.5714], phi:[0.4929]] [M:[[8], [0], [-8], [-4], [4], [-8], [-4]], q:[[-2], [-6]], qb:[[2], [10]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$ ${}$ -3 2*t^2.829 + 2*t^2.914 + t^2.957 + t^3. + t^3.257 + t^4.221 + t^4.307 + 2*t^4.393 + t^4.479 + 2*t^4.564 + t^4.65 + t^4.736 + t^4.907 + 2*t^5.657 + 3*t^5.743 + 2*t^5.786 + 3*t^5.829 + 2*t^5.871 + t^5.914 + t^5.957 - 3*t^6. - t^6.086 + t^6.214 - t^6.343 + t^6.514 + 2*t^7.05 + 3*t^7.136 + t^7.179 + 5*t^7.221 + 4*t^7.307 + t^7.35 + 4*t^7.393 - t^7.436 + 3*t^7.479 + t^7.521 + 2*t^7.564 - t^7.607 + t^7.65 + t^7.736 - t^7.779 + 2*t^7.821 + t^7.864 + t^7.907 - t^7.95 + t^7.993 + t^8.164 + t^8.443 + 2*t^8.486 + t^8.529 + 3*t^8.572 + 4*t^8.614 + 3*t^8.657 + 5*t^8.7 + 2*t^8.743 + 7*t^8.786 - 5*t^8.829 + 4*t^8.871 - 8*t^8.914 + t^8.957 - t^4.479/y - t^7.307/y - t^7.393/y - t^7.436/y + t^7.521/y + t^7.564/y + t^7.65/y + t^8.657/y + (4*t^8.743)/y + (2*t^8.786)/y + (3*t^8.829)/y + (2*t^8.871)/y + (2*t^8.914)/y + t^8.957/y - t^4.479*y - t^7.307*y - t^7.393*y - t^7.436*y + t^7.521*y + t^7.564*y + t^7.65*y + t^8.657*y + 4*t^8.743*y + 2*t^8.786*y + 3*t^8.829*y + 2*t^8.871*y + 2*t^8.914*y + t^8.957*y (2*t^2.829)/g1^8 + (2*t^2.914)/g1^4 + t^2.957/g1^2 + t^3. + g1^12*t^3.257 + t^4.221/g1^13 + t^4.307/g1^9 + (2*t^4.393)/g1^5 + t^4.479/g1 + 2*g1^3*t^4.564 + g1^7*t^4.65 + g1^11*t^4.736 + g1^19*t^4.907 + (2*t^5.657)/g1^16 + (3*t^5.743)/g1^12 + (2*t^5.786)/g1^10 + (3*t^5.829)/g1^8 + (2*t^5.871)/g1^6 + t^5.914/g1^4 + t^5.957/g1^2 - 3*t^6. - g1^4*t^6.086 + g1^10*t^6.214 - g1^16*t^6.343 + g1^24*t^6.514 + (2*t^7.05)/g1^21 + (3*t^7.136)/g1^17 + t^7.179/g1^15 + (5*t^7.221)/g1^13 + (4*t^7.307)/g1^9 + t^7.35/g1^7 + (4*t^7.393)/g1^5 - t^7.436/g1^3 + (3*t^7.479)/g1 + g1*t^7.521 + 2*g1^3*t^7.564 - g1^5*t^7.607 + g1^7*t^7.65 + g1^11*t^7.736 - g1^13*t^7.779 + 2*g1^15*t^7.821 + g1^17*t^7.864 + g1^19*t^7.907 - g1^21*t^7.95 + g1^23*t^7.993 + g1^31*t^8.164 + t^8.443/g1^26 + (2*t^8.486)/g1^24 + t^8.529/g1^22 + (3*t^8.572)/g1^20 + (4*t^8.614)/g1^18 + (3*t^8.657)/g1^16 + (5*t^8.7)/g1^14 + (2*t^8.743)/g1^12 + (7*t^8.786)/g1^10 - (5*t^8.829)/g1^8 + (4*t^8.871)/g1^6 - (8*t^8.914)/g1^4 + t^8.957/g1^2 - t^4.479/(g1*y) - t^7.307/(g1^9*y) - t^7.393/(g1^5*y) - t^7.436/(g1^3*y) + (g1*t^7.521)/y + (g1^3*t^7.564)/y + (g1^7*t^7.65)/y + t^8.657/(g1^16*y) + (4*t^8.743)/(g1^12*y) + (2*t^8.786)/(g1^10*y) + (3*t^8.829)/(g1^8*y) + (2*t^8.871)/(g1^6*y) + (2*t^8.914)/(g1^4*y) + t^8.957/(g1^2*y) - (t^4.479*y)/g1 - (t^7.307*y)/g1^9 - (t^7.393*y)/g1^5 - (t^7.436*y)/g1^3 + g1*t^7.521*y + g1^3*t^7.564*y + g1^7*t^7.65*y + (t^8.657*y)/g1^16 + (4*t^8.743*y)/g1^12 + (2*t^8.786*y)/g1^10 + (3*t^8.829*y)/g1^8 + (2*t^8.871*y)/g1^6 + (2*t^8.914*y)/g1^4 + (t^8.957*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50892 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{6}$ 0.6951 0.8524 0.8155 [M:[1.0444, 1.0, 0.9556, 0.9778, 1.0222, 0.9556], q:[0.4889, 0.4667], qb:[0.5111, 0.5555], phi:[0.4944]] 2*t^2.867 + t^2.933 + t^2.967 + t^3. + t^3.067 + t^3.2 + t^4.283 + t^4.35 + 2*t^4.417 + t^4.483 + 2*t^4.55 + t^4.617 + t^4.683 + t^4.816 + 2*t^5.733 + t^5.8 + 2*t^5.833 + t^5.867 + t^5.9 + 2*t^5.933 + t^5.967 - 2*t^6. - t^4.483/y - t^4.483*y detail