Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56021 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$ 0.7082 0.8763 0.8082 [M:[1.0876, 1.0, 0.9124, 0.9416, 1.0292, 0.9124, 0.854], q:[0.4708, 0.4416], qb:[0.5292, 0.6168], phi:[0.4854]] [M:[[6], [0], [-6], [-4], [2], [-6], [-10]], q:[[-2], [-4]], qb:[[2], [8]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{4}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{4}M_{5}$, ${ }M_{2}\phi_{1}^{2}$ ${}$ -2 t^2.562 + 2*t^2.737 + t^2.825 + t^2.912 + t^3. + t^3.088 + t^4.106 + t^4.193 + t^4.281 + t^4.369 + t^4.456 + 2*t^4.631 + t^4.719 + t^4.894 + t^5.124 + t^5.157 + 2*t^5.299 + t^5.387 + 3*t^5.474 + 2*t^5.562 + 4*t^5.65 + t^5.737 + 3*t^5.825 + t^5.912 - 2*t^6. - t^6.175 - 2*t^6.263 - t^6.438 - t^6.526 + t^6.668 + t^6.755 + 3*t^6.843 + 3*t^6.931 + 4*t^7.018 + 4*t^7.106 + 4*t^7.193 + 3*t^7.281 + 3*t^7.369 + 2*t^7.456 + t^7.544 + t^7.631 + t^7.686 + 2*t^7.861 + t^7.949 + 3*t^8.036 + 2*t^8.124 + 7*t^8.212 + 3*t^8.299 + 7*t^8.387 + 4*t^8.474 + 3*t^8.562 + t^8.65 - t^8.737 - 3*t^8.825 - 3*t^8.912 - t^4.456/y - t^7.018/y - t^7.193/y - t^7.281/y + t^7.631/y + t^7.719/y + t^7.894/y + (2*t^8.299)/y + t^8.387/y + (2*t^8.474)/y + (3*t^8.562)/y + (3*t^8.65)/y + (3*t^8.737)/y + (3*t^8.825)/y + (2*t^8.912)/y - t^4.456*y - t^7.018*y - t^7.193*y - t^7.281*y + t^7.631*y + t^7.719*y + t^7.894*y + 2*t^8.299*y + t^8.387*y + 2*t^8.474*y + 3*t^8.562*y + 3*t^8.65*y + 3*t^8.737*y + 3*t^8.825*y + 2*t^8.912*y t^2.562/g1^10 + (2*t^2.737)/g1^6 + t^2.825/g1^4 + t^2.912/g1^2 + t^3. + g1^2*t^3.088 + t^4.106/g1^9 + t^4.193/g1^7 + t^4.281/g1^5 + t^4.369/g1^3 + t^4.456/g1 + 2*g1^3*t^4.631 + g1^5*t^4.719 + g1^9*t^4.894 + t^5.124/g1^20 + g1^15*t^5.157 + (2*t^5.299)/g1^16 + t^5.387/g1^14 + (3*t^5.474)/g1^12 + (2*t^5.562)/g1^10 + (4*t^5.65)/g1^8 + t^5.737/g1^6 + (3*t^5.825)/g1^4 + t^5.912/g1^2 - 2*t^6. - g1^4*t^6.175 - 2*g1^6*t^6.263 - g1^10*t^6.438 - g1^12*t^6.526 + t^6.668/g1^19 + t^6.755/g1^17 + (3*t^6.843)/g1^15 + (3*t^6.931)/g1^13 + (4*t^7.018)/g1^11 + (4*t^7.106)/g1^9 + (4*t^7.193)/g1^7 + (3*t^7.281)/g1^5 + (3*t^7.369)/g1^3 + (2*t^7.456)/g1 + g1*t^7.544 + g1^3*t^7.631 + t^7.686/g1^30 + (2*t^7.861)/g1^26 + t^7.949/g1^24 + (3*t^8.036)/g1^22 + (2*t^8.124)/g1^20 + (7*t^8.212)/g1^18 + (3*t^8.299)/g1^16 + (7*t^8.387)/g1^14 + (4*t^8.474)/g1^12 + (3*t^8.562)/g1^10 + t^8.65/g1^8 - t^8.737/g1^6 - (3*t^8.825)/g1^4 - (3*t^8.912)/g1^2 - t^4.456/(g1*y) - t^7.018/(g1^11*y) - t^7.193/(g1^7*y) - t^7.281/(g1^5*y) + (g1^3*t^7.631)/y + (g1^5*t^7.719)/y + (g1^9*t^7.894)/y + (2*t^8.299)/(g1^16*y) + t^8.387/(g1^14*y) + (2*t^8.474)/(g1^12*y) + (3*t^8.562)/(g1^10*y) + (3*t^8.65)/(g1^8*y) + (3*t^8.737)/(g1^6*y) + (3*t^8.825)/(g1^4*y) + (2*t^8.912)/(g1^2*y) - (t^4.456*y)/g1 - (t^7.018*y)/g1^11 - (t^7.193*y)/g1^7 - (t^7.281*y)/g1^5 + g1^3*t^7.631*y + g1^5*t^7.719*y + g1^9*t^7.894*y + (2*t^8.299*y)/g1^16 + (t^8.387*y)/g1^14 + (2*t^8.474*y)/g1^12 + (3*t^8.562*y)/g1^10 + (3*t^8.65*y)/g1^8 + (3*t^8.737*y)/g1^6 + (3*t^8.825*y)/g1^4 + (2*t^8.912*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50885 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{1}M_{6}$ 0.6974 0.8554 0.8153 [M:[1.0548, 1.0, 0.9452, 0.9635, 1.0183, 0.9452], q:[0.4817, 0.4635], qb:[0.5183, 0.5731], phi:[0.4909]] 2*t^2.836 + t^2.89 + t^2.945 + t^3. + t^3.055 + t^3.274 + t^4.253 + t^4.308 + t^4.363 + t^4.418 + t^4.473 + 2*t^4.582 + t^4.637 + t^4.747 + t^4.911 + 2*t^5.671 + t^5.726 + 3*t^5.781 + t^5.836 + 3*t^5.89 + t^5.945 - 2*t^6. - t^4.473/y - t^4.473*y detail