Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56006 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_4M_6$ + $ M_7\phi_1q_2^2$ 0.6845 0.8625 0.7936 [X:[], M:[1.1674, 1.0156, 0.8326, 0.785, 0.7173, 1.215, 0.6696], q:[0.3925, 0.4401], qb:[0.5919, 0.7749], phi:[0.4502]] [X:[], M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [1, -5], [-2, 16], [4, -28]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_5$, $ M_3$, $ \phi_1^2$, $ M_2$, $ q_2\tilde{q}_1$, $ M_1$, $ M_6$, $ \phi_1q_1^2$, $ M_7^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_5M_7$, $ M_5^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_7$, $ M_3M_5$, $ M_7\phi_1^2$, $ M_5\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_7$, $ M_7q_2\tilde{q}_1$, $ M_2M_5$, $ M_3\phi_1^2$, $ M_5q_2\tilde{q}_1$, $ M_1M_7$, $ M_3q_2\tilde{q}_1$, $ M_1M_5$, $ M_6M_7$, $ M_7\phi_1q_1^2$, $ M_2\phi_1^2$, $ M_5M_6$, $ \phi_1^2q_2\tilde{q}_1$ . -2 t^2.01 + t^2.15 + t^2.5 + t^2.7 + t^3.05 + t^3.1 + t^3.5 + t^3.65 + t^3.71 + t^4.02 + t^4.1 + t^4.16 + 2*t^4.3 + t^4.45 + t^4.51 + t^4.65 + t^4.71 + t^4.85 + t^4.9 + t^5. + t^5.06 + t^5.1 + 2*t^5.2 + t^5.25 + t^5.51 + t^5.59 + 2*t^5.65 + t^5.71 + t^5.75 + 2*t^5.8 - 2*t^6. + t^6.03 + t^6.09 + t^6.11 + t^6.14 + t^6.17 + t^6.19 + t^6.2 + t^6.25 + 2*t^6.31 + t^6.41 + 2*t^6.46 + t^6.52 + t^6.6 + t^6.66 + t^6.69 + t^6.72 + t^6.74 + 2*t^6.8 + t^6.86 - t^6.9 + t^6.91 + 2*t^7. + t^7.05 + t^7.06 + t^7.11 + 2*t^7.15 + t^7.2 + 2*t^7.21 + t^7.26 + t^7.35 + 2*t^7.4 + t^7.41 + t^7.52 + t^7.54 + 2*t^7.6 + 2*t^7.66 + t^7.72 + t^7.75 + t^7.76 + 3*t^7.81 + t^7.9 + 2*t^7.95 + t^8. - t^8.01 + t^8.04 + t^8.09 + t^8.1 + t^8.12 - 2*t^8.15 + t^8.18 + t^8.2 + t^8.21 + t^8.25 + t^8.26 + 2*t^8.32 + t^8.34 + 2*t^8.4 + t^8.42 + t^8.45 + 2*t^8.46 - 2*t^8.5 + t^8.52 + t^8.55 + 3*t^8.61 + t^8.67 + t^8.69 - t^8.7 + t^8.73 + t^8.75 + t^8.79 + 2*t^8.81 + t^8.84 + t^8.87 + 2*t^8.89 - t^8.9 + t^8.92 - t^4.35/y - t^6.36/y - t^6.5/y - t^7.05/y + t^7.16/y + t^7.3/y - t^7.4/y + t^7.51/y + (2*t^7.65)/y + t^7.71/y + t^7.85/y + t^8.06/y + t^8.1/y + (3*t^8.2)/y + t^8.25/y + t^8.34/y - t^8.37/y + t^8.54/y + t^8.59/y + t^8.65/y + t^8.71/y + t^8.75/y + (2*t^8.8)/y + t^8.86/y - t^4.35*y - t^6.36*y - t^6.5*y - t^7.05*y + t^7.16*y + t^7.3*y - t^7.4*y + t^7.51*y + 2*t^7.65*y + t^7.71*y + t^7.85*y + t^8.06*y + t^8.1*y + 3*t^8.2*y + t^8.25*y + t^8.34*y - t^8.37*y + t^8.54*y + t^8.59*y + t^8.65*y + t^8.71*y + t^8.75*y + 2*t^8.8*y + t^8.86*y (g1^4*t^2.01)/g2^28 + (g1*t^2.15)/g2^5 + (g2^7*t^2.5)/g1 + t^2.7/g2^4 + (g2^8*t^3.05)/g1^2 + (g2^15*t^3.1)/g1 + (g1*t^3.5)/g2^7 + (g2^16*t^3.65)/g1^2 + (g1^2*t^3.71)/g2^18 + (g1^8*t^4.02)/g2^56 + g1*g2*t^4.1 + (g1^5*t^4.16)/g2^33 + (2*g1^2*t^4.3)/g2^10 + (g2^13*t^4.45)/g1 + (g1^3*t^4.51)/g2^21 + g2^2*t^4.65 + (g1^4*t^4.71)/g2^32 + (g1*t^4.85)/g2^9 + (g1^2*t^4.9)/g2^2 + (g2^14*t^5.)/g1^2 + (g1^2*t^5.06)/g2^20 + (g1^3*t^5.1)/g2^13 + (2*g2^3*t^5.2)/g1 + g2^10*t^5.25 + (g1^5*t^5.51)/g2^35 + (g2^22*t^5.59)/g1^2 + (2*g1^2*t^5.65)/g2^12 + (g1^6*t^5.71)/g2^46 + (g2^4*t^5.75)/g1^2 + (2*g2^11*t^5.8)/g1 - 2*t^6. + (g1^12*t^6.03)/g2^84 + (g2^16*t^6.09)/g1^4 + (g1^5*t^6.11)/g2^27 + (g2^23*t^6.14)/g1^3 + (g1^9*t^6.17)/g2^61 + (g2^30*t^6.19)/g1^2 + (g1*t^6.2)/g2^11 + (g1^2*t^6.25)/g2^4 + (2*g1^6*t^6.31)/g2^38 + (g1^2*t^6.41)/g2^22 + (2*g1^3*t^6.46)/g2^15 + (g1^7*t^6.52)/g2^49 + g2^8*t^6.6 + (g1^4*t^6.66)/g2^26 + (g2^24*t^6.69)/g1^4 + (g1^8*t^6.72)/g2^60 + (g2^31*t^6.74)/g1^3 + (2*g1*t^6.8)/g2^3 + (g1^5*t^6.86)/g2^37 - (g2^13*t^6.9)/g1^3 + (g1^6*t^6.91)/g2^30 + (2*g1^2*t^7.)/g2^14 + (g1^3*t^7.05)/g2^7 + (g1^6*t^7.06)/g2^48 + (g1^7*t^7.11)/g2^41 + (2*g2^9*t^7.15)/g1 + g2^16*t^7.2 + (2*g1^3*t^7.21)/g2^25 + (g1^4*t^7.26)/g2^18 + t^7.35/g2^2 + 2*g1*g2^5*t^7.4 + (g1^4*t^7.41)/g2^36 + (g1^9*t^7.52)/g2^63 + (g2^28*t^7.54)/g1^2 + (2*g1^2*t^7.6)/g2^6 + (2*g1^6*t^7.66)/g2^40 + (g1^10*t^7.72)/g2^74 + (g2^17*t^7.75)/g1 + (g1^2*t^7.76)/g2^24 + (3*g1^3*t^7.81)/g2^17 + t^7.9/(g1*g2) + 2*g2^6*t^7.95 + g1*g2^13*t^8. - (g1^4*t^8.01)/g2^28 + (g1^16*t^8.04)/g2^112 + (g2^29*t^8.09)/g1^3 + t^8.1/g2^12 + (g1^9*t^8.12)/g2^55 - (2*g1*t^8.15)/g2^5 + (g1^13*t^8.18)/g2^89 + g1^2*g2^2*t^8.2 + (g1^5*t^8.21)/g2^39 + (g2^11*t^8.25)/g1^3 + (g1^6*t^8.26)/g2^32 + (2*g1^10*t^8.32)/g2^66 + (g2^25*t^8.34)/g1 + (2*g1^3*t^8.4)/g2^9 + (g1^6*t^8.42)/g2^50 + t^8.45/g1^2 + (2*g1^7*t^8.46)/g2^43 - (2*g2^7*t^8.5)/g1 + (g1^11*t^8.52)/g2^77 + g2^14*t^8.55 + (3*g1^4*t^8.61)/g2^20 + (g1^8*t^8.67)/g2^54 + (g2^37*t^8.69)/g1^3 - t^8.7/g2^4 + (g1^12*t^8.73)/g2^88 + g1*g2^3*t^8.75 + (g2^12*t^8.79)/g1^4 + (2*g1^5*t^8.81)/g2^31 + (g2^19*t^8.84)/g1^3 + (g1^9*t^8.87)/g2^65 + (2*g2^26*t^8.89)/g1^2 - (g1*t^8.9)/g2^15 + (g1^10*t^8.92)/g2^58 - t^4.35/(g2^2*y) - (g1^4*t^6.36)/(g2^30*y) - (g1*t^6.5)/(g2^7*y) - t^7.05/(g2^6*y) + (g1^5*t^7.16)/(g2^33*y) + (g1^2*t^7.3)/(g2^10*y) - (g2^6*t^7.4)/(g1^2*y) + (g1^3*t^7.51)/(g2^21*y) + (2*g2^2*t^7.65)/y + (g1^4*t^7.71)/(g2^32*y) + (g1*t^7.85)/(g2^9*y) + (g1^2*t^8.06)/(g2^20*y) + (g1^3*t^8.1)/(g2^13*y) + (3*g2^3*t^8.2)/(g1*y) + (g2^10*t^8.25)/y + (g2^26*t^8.34)/(g1^4*y) - (g1^8*t^8.37)/(g2^58*y) + (g2^15*t^8.54)/(g1^3*y) + (g2^22*t^8.59)/(g1^2*y) + (g1^2*t^8.65)/(g2^12*y) + (g1^6*t^8.71)/(g2^46*y) + (g2^4*t^8.75)/(g1^2*y) + (2*g2^11*t^8.8)/(g1*y) + (g1^3*t^8.86)/(g2^23*y) - (t^4.35*y)/g2^2 - (g1^4*t^6.36*y)/g2^30 - (g1*t^6.5*y)/g2^7 - (t^7.05*y)/g2^6 + (g1^5*t^7.16*y)/g2^33 + (g1^2*t^7.3*y)/g2^10 - (g2^6*t^7.4*y)/g1^2 + (g1^3*t^7.51*y)/g2^21 + 2*g2^2*t^7.65*y + (g1^4*t^7.71*y)/g2^32 + (g1*t^7.85*y)/g2^9 + (g1^2*t^8.06*y)/g2^20 + (g1^3*t^8.1*y)/g2^13 + (3*g2^3*t^8.2*y)/g1 + g2^10*t^8.25*y + (g2^26*t^8.34*y)/g1^4 - (g1^8*t^8.37*y)/g2^58 + (g2^15*t^8.54*y)/g1^3 + (g2^22*t^8.59*y)/g1^2 + (g1^2*t^8.65*y)/g2^12 + (g1^6*t^8.71*y)/g2^46 + (g2^4*t^8.75*y)/g1^2 + (2*g2^11*t^8.8*y)/g1 + (g1^3*t^8.86*y)/g2^23


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48307 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_4M_6$ 0.6637 0.8211 0.8083 [X:[], M:[1.168, 1.0146, 0.832, 0.7862, 0.7178, 1.2138], q:[0.3931, 0.4389], qb:[0.5922, 0.7749], phi:[0.4502]] t^2.15 + t^2.5 + t^2.7 + t^3.04 + t^3.09 + t^3.5 + t^3.64 + t^3.71 + t^3.98 + t^4.1 + 2*t^4.31 + t^4.44 + t^4.65 + t^4.85 + t^4.9 + t^4.99 + 2*t^5.2 + t^5.25 + t^5.59 + t^5.66 + t^5.75 + 2*t^5.79 - 2*t^6. - t^4.35/y - t^4.35*y detail