Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56006 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ | 0.6845 | 0.8625 | 0.7936 | [M:[1.1674, 1.0156, 0.8326, 0.785, 0.7173, 1.215, 0.6696], q:[0.3925, 0.4401], qb:[0.5919, 0.7749], phi:[0.4502]] | [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [1, -5], [-2, 16], [4, -28]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{5}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{7}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{7}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{5}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{7}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{6}M_{7}$, ${ }M_{7}\phi_{1}q_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ | ${}$ | -2 | t^2.009 + t^2.152 + t^2.498 + t^2.701 + t^3.047 + t^3.096 + t^3.502 + t^3.645 + t^3.705 + t^4.018 + t^4.1 + t^4.161 + 2*t^4.304 + t^4.446 + t^4.507 + t^4.65 + t^4.71 + t^4.853 + t^4.902 + t^4.996 + t^5.056 + t^5.105 + 2*t^5.199 + t^5.248 + t^5.511 + t^5.594 + 2*t^5.654 + t^5.714 + t^5.748 + 2*t^5.797 - 2*t^6. + t^6.027 + t^6.094 + t^6.109 + t^6.143 + t^6.17 + t^6.192 + t^6.203 + t^6.252 + 2*t^6.312 + t^6.406 + 2*t^6.455 + t^6.516 + t^6.598 + t^6.658 + t^6.692 + t^6.719 + t^6.741 + 2*t^6.801 + t^6.862 - t^6.895 + t^6.911 + 2*t^7.004 + t^7.053 + t^7.065 + t^7.114 + 2*t^7.147 + t^7.196 + 2*t^7.208 + t^7.257 + t^7.35 + 2*t^7.399 + t^7.411 + t^7.52 + t^7.542 + 2*t^7.603 + 2*t^7.663 + t^7.723 + t^7.745 + t^7.757 + 3*t^7.806 + t^7.9 + 2*t^7.949 + t^7.998 - t^8.009 + t^8.036 + t^8.091 + t^8.103 + t^8.118 - 2*t^8.152 + t^8.179 + t^8.201 + t^8.212 + t^8.246 + t^8.261 + 2*t^8.321 + t^8.344 + 2*t^8.404 + t^8.415 + t^8.449 + 2*t^8.464 - 2*t^8.498 + t^8.525 + t^8.547 + 3*t^8.607 + t^8.667 + t^8.69 - t^8.701 + t^8.728 + t^8.75 + t^8.795 + 2*t^8.81 + t^8.844 + t^8.871 + 2*t^8.893 - t^8.904 + t^8.92 - t^4.35/y - t^6.359/y - t^6.502/y - t^7.051/y + t^7.161/y + t^7.304/y - t^7.397/y + t^7.507/y + (2*t^7.65)/y + t^7.71/y + t^7.853/y + t^8.056/y + t^8.105/y + (3*t^8.199)/y + t^8.248/y + t^8.342/y - t^8.368/y + t^8.545/y + t^8.594/y + t^8.654/y + t^8.714/y + t^8.748/y + (2*t^8.797)/y + t^8.857/y - t^4.35*y - t^6.359*y - t^6.502*y - t^7.051*y + t^7.161*y + t^7.304*y - t^7.397*y + t^7.507*y + 2*t^7.65*y + t^7.71*y + t^7.853*y + t^8.056*y + t^8.105*y + 3*t^8.199*y + t^8.248*y + t^8.342*y - t^8.368*y + t^8.545*y + t^8.594*y + t^8.654*y + t^8.714*y + t^8.748*y + 2*t^8.797*y + t^8.857*y | (g1^4*t^2.009)/g2^28 + (g1*t^2.152)/g2^5 + (g2^7*t^2.498)/g1 + t^2.701/g2^4 + (g2^8*t^3.047)/g1^2 + (g2^15*t^3.096)/g1 + (g1*t^3.502)/g2^7 + (g2^16*t^3.645)/g1^2 + (g1^2*t^3.705)/g2^18 + (g1^8*t^4.018)/g2^56 + g1*g2*t^4.1 + (g1^5*t^4.161)/g2^33 + (2*g1^2*t^4.304)/g2^10 + (g2^13*t^4.446)/g1 + (g1^3*t^4.507)/g2^21 + g2^2*t^4.65 + (g1^4*t^4.71)/g2^32 + (g1*t^4.853)/g2^9 + (g1^2*t^4.902)/g2^2 + (g2^14*t^4.996)/g1^2 + (g1^2*t^5.056)/g2^20 + (g1^3*t^5.105)/g2^13 + (2*g2^3*t^5.199)/g1 + g2^10*t^5.248 + (g1^5*t^5.511)/g2^35 + (g2^22*t^5.594)/g1^2 + (2*g1^2*t^5.654)/g2^12 + (g1^6*t^5.714)/g2^46 + (g2^4*t^5.748)/g1^2 + (2*g2^11*t^5.797)/g1 - 2*t^6. + (g1^12*t^6.027)/g2^84 + (g2^16*t^6.094)/g1^4 + (g1^5*t^6.109)/g2^27 + (g2^23*t^6.143)/g1^3 + (g1^9*t^6.17)/g2^61 + (g2^30*t^6.192)/g1^2 + (g1*t^6.203)/g2^11 + (g1^2*t^6.252)/g2^4 + (2*g1^6*t^6.312)/g2^38 + (g1^2*t^6.406)/g2^22 + (2*g1^3*t^6.455)/g2^15 + (g1^7*t^6.516)/g2^49 + g2^8*t^6.598 + (g1^4*t^6.658)/g2^26 + (g2^24*t^6.692)/g1^4 + (g1^8*t^6.719)/g2^60 + (g2^31*t^6.741)/g1^3 + (2*g1*t^6.801)/g2^3 + (g1^5*t^6.862)/g2^37 - (g2^13*t^6.895)/g1^3 + (g1^6*t^6.911)/g2^30 + (2*g1^2*t^7.004)/g2^14 + (g1^3*t^7.053)/g2^7 + (g1^6*t^7.065)/g2^48 + (g1^7*t^7.114)/g2^41 + (2*g2^9*t^7.147)/g1 + g2^16*t^7.196 + (2*g1^3*t^7.208)/g2^25 + (g1^4*t^7.257)/g2^18 + t^7.35/g2^2 + 2*g1*g2^5*t^7.399 + (g1^4*t^7.411)/g2^36 + (g1^9*t^7.52)/g2^63 + (g2^28*t^7.542)/g1^2 + (2*g1^2*t^7.603)/g2^6 + (2*g1^6*t^7.663)/g2^40 + (g1^10*t^7.723)/g2^74 + (g2^17*t^7.745)/g1 + (g1^2*t^7.757)/g2^24 + (3*g1^3*t^7.806)/g2^17 + t^7.9/(g1*g2) + 2*g2^6*t^7.949 + g1*g2^13*t^7.998 - (g1^4*t^8.009)/g2^28 + (g1^16*t^8.036)/g2^112 + (g2^29*t^8.091)/g1^3 + t^8.103/g2^12 + (g1^9*t^8.118)/g2^55 - (2*g1*t^8.152)/g2^5 + (g1^13*t^8.179)/g2^89 + g1^2*g2^2*t^8.201 + (g1^5*t^8.212)/g2^39 + (g2^11*t^8.246)/g1^3 + (g1^6*t^8.261)/g2^32 + (2*g1^10*t^8.321)/g2^66 + (g2^25*t^8.344)/g1 + (2*g1^3*t^8.404)/g2^9 + (g1^6*t^8.415)/g2^50 + t^8.449/g1^2 + (2*g1^7*t^8.464)/g2^43 - (2*g2^7*t^8.498)/g1 + (g1^11*t^8.525)/g2^77 + g2^14*t^8.547 + (3*g1^4*t^8.607)/g2^20 + (g1^8*t^8.667)/g2^54 + (g2^37*t^8.69)/g1^3 - t^8.701/g2^4 + (g1^12*t^8.728)/g2^88 + g1*g2^3*t^8.75 + (g2^12*t^8.795)/g1^4 + (2*g1^5*t^8.81)/g2^31 + (g2^19*t^8.844)/g1^3 + (g1^9*t^8.871)/g2^65 + (2*g2^26*t^8.893)/g1^2 - (g1*t^8.904)/g2^15 + (g1^10*t^8.92)/g2^58 - t^4.35/(g2^2*y) - (g1^4*t^6.359)/(g2^30*y) - (g1*t^6.502)/(g2^7*y) - t^7.051/(g2^6*y) + (g1^5*t^7.161)/(g2^33*y) + (g1^2*t^7.304)/(g2^10*y) - (g2^6*t^7.397)/(g1^2*y) + (g1^3*t^7.507)/(g2^21*y) + (2*g2^2*t^7.65)/y + (g1^4*t^7.71)/(g2^32*y) + (g1*t^7.853)/(g2^9*y) + (g1^2*t^8.056)/(g2^20*y) + (g1^3*t^8.105)/(g2^13*y) + (3*g2^3*t^8.199)/(g1*y) + (g2^10*t^8.248)/y + (g2^26*t^8.342)/(g1^4*y) - (g1^8*t^8.368)/(g2^58*y) + (g2^15*t^8.545)/(g1^3*y) + (g2^22*t^8.594)/(g1^2*y) + (g1^2*t^8.654)/(g2^12*y) + (g1^6*t^8.714)/(g2^46*y) + (g2^4*t^8.748)/(g1^2*y) + (2*g2^11*t^8.797)/(g1*y) + (g1^3*t^8.857)/(g2^23*y) - (t^4.35*y)/g2^2 - (g1^4*t^6.359*y)/g2^30 - (g1*t^6.502*y)/g2^7 - (t^7.051*y)/g2^6 + (g1^5*t^7.161*y)/g2^33 + (g1^2*t^7.304*y)/g2^10 - (g2^6*t^7.397*y)/g1^2 + (g1^3*t^7.507*y)/g2^21 + 2*g2^2*t^7.65*y + (g1^4*t^7.71*y)/g2^32 + (g1*t^7.853*y)/g2^9 + (g1^2*t^8.056*y)/g2^20 + (g1^3*t^8.105*y)/g2^13 + (3*g2^3*t^8.199*y)/g1 + g2^10*t^8.248*y + (g2^26*t^8.342*y)/g1^4 - (g1^8*t^8.368*y)/g2^58 + (g2^15*t^8.545*y)/g1^3 + (g2^22*t^8.594*y)/g1^2 + (g1^2*t^8.654*y)/g2^12 + (g1^6*t^8.714*y)/g2^46 + (g2^4*t^8.748*y)/g1^2 + (2*g2^11*t^8.797*y)/g1 + (g1^3*t^8.857*y)/g2^23 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
57893 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ | 0.6743 | 0.8469 | 0.7962 | [M:[1.2, 0.961, 0.8, 0.8537, 0.7463, 1.1463, 0.8], q:[0.4268, 0.3732], qb:[0.6121, 0.7732], phi:[0.4537]] | t^2.239 + 2*t^2.4 + t^2.722 + t^2.883 + t^2.956 + t^3.439 + t^3.6 + t^3.922 + t^4.156 + t^4.317 + 2*t^4.478 + 2*t^4.639 + 3*t^4.8 + t^4.961 + t^5.034 + 3*t^5.122 + t^5.195 + t^5.283 + 2*t^5.356 + t^5.605 + 2*t^5.678 + t^5.766 + 3*t^5.839 + t^5.912 - t^6. - t^4.361/y - t^4.361*y | detail | |
57888 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{5}M_{7}$ | 0.5557 | 0.7099 | 0.7827 | [M:[1.289, 0.757, 0.711, 1.023, 0.844, 0.977, 1.156], q:[0.5115, 0.1995], qb:[0.7316, 0.7775], phi:[0.445]] | t^2.133 + t^2.271 + t^2.532 + t^2.67 + t^2.793 + t^2.931 + t^3.468 + t^3.867 + t^4.128 + t^4.266 + t^4.404 + t^4.527 + t^4.542 + t^4.665 + 2*t^4.803 + t^4.926 + t^4.941 + 3*t^5.064 + 2*t^5.202 + t^5.325 + 2*t^5.463 + t^5.586 + t^5.601 + 2*t^5.724 - t^6. - t^4.335/y - t^4.335*y | detail | |
57892 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{7}q_{2}\tilde{q}_{1}$ | 0.6465 | 0.809 | 0.7992 | [M:[1.2009, 0.8002, 0.7991, 0.8026, 0.8002, 1.1974, 0.8037], q:[0.4013, 0.3978], qb:[0.7985, 0.7997], phi:[0.4007]] | t^2.397 + 2*t^2.401 + t^2.404 + t^2.411 + t^3.589 + t^3.592 + t^3.603 + t^3.61 + t^4.791 + 2*t^4.794 + t^4.798 + 5*t^4.801 + 2*t^4.805 + t^4.808 + 2*t^4.812 + t^4.815 + t^4.822 + t^5.986 + 2*t^5.99 + 4*t^5.993 - 2*t^6. - t^4.202/y - t^4.202*y | detail | |
57887 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{7}^{2}$ | 0.6234 | 0.7876 | 0.7914 | [M:[1.25, 0.8781, 0.75, 0.9594, 0.7906, 1.0406, 1.0], q:[0.4797, 0.2703], qb:[0.6422, 0.7703], phi:[0.4594]] | t^2.25 + t^2.372 + t^2.634 + t^2.737 + t^2.756 + t^3. + t^3.122 + t^3.75 + t^4.116 + t^4.237 + t^4.256 + t^4.5 + t^4.622 + 2*t^4.744 + t^4.987 + 2*t^5.006 + t^5.109 + t^5.128 + t^5.231 + t^5.25 + t^5.269 + 2*t^5.372 + t^5.391 + t^5.475 + 2*t^5.494 + t^5.634 + t^5.737 + 2*t^5.756 + t^5.859 - t^6. - t^4.378/y - t^4.378*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
48307 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}q_{2}$ + ${ }M_{4}M_{6}$ | 0.6637 | 0.8211 | 0.8083 | [M:[1.168, 1.0146, 0.832, 0.7862, 0.7178, 1.2138], q:[0.3931, 0.4389], qb:[0.5922, 0.7749], phi:[0.4502]] | t^2.153 + t^2.496 + t^2.701 + t^3.044 + t^3.093 + t^3.504 + t^3.641 + t^3.709 + t^3.984 + t^4.101 + 2*t^4.307 + t^4.444 + t^4.649 + t^4.855 + t^4.904 + t^4.992 + 2*t^5.197 + t^5.247 + t^5.589 + t^5.657 + t^5.745 + 2*t^5.795 - 2*t^6. - t^4.351/y - t^4.351*y | detail |