Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56001 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}\phi_{1}q_{1}^{2}$ 0.7291 0.9105 0.8008 [M:[0.9974, 1.0487, 1.0026, 0.8538, 0.9052, 0.9974, 0.6705], q:[0.4269, 0.5757], qb:[0.5244, 0.5705], phi:[0.4756]] [M:[[-3, 1], [2, 0], [3, -1], [-6, 0], [-1, -1], [-3, 1], [7, 0]], q:[[-3, 0], [6, -1]], qb:[[1, 0], [0, 1]], phi:[[-1, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{5}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$ ${}$ -3 t^2.012 + t^2.561 + t^2.716 + t^2.854 + 2*t^2.992 + t^3.146 + t^3.3 + t^4.023 + t^4.281 + t^4.419 + t^4.435 + 2*t^4.573 + t^4.711 + 2*t^4.727 + t^4.85 + 2*t^4.865 + t^4.881 + 2*t^5.004 + t^5.123 + t^5.158 + t^5.277 + t^5.312 + t^5.415 + t^5.431 + t^5.554 + 3*t^5.708 + t^5.846 + t^5.862 + 2*t^5.984 - 3*t^6. + t^6.035 + t^6.138 + 2*t^6.292 + t^6.446 + 2*t^6.585 + t^6.601 + t^6.723 + 2*t^6.739 + t^6.842 + t^6.861 + 2*t^6.877 + t^6.893 + t^6.996 + 2*t^7.015 + 2*t^7.135 + t^7.15 + t^7.169 + 2*t^7.273 + 2*t^7.289 + t^7.324 + 2*t^7.411 + 2*t^7.427 + 2*t^7.443 + 3*t^7.565 + t^7.581 + t^7.597 + t^7.684 + 2*t^7.703 + 3*t^7.719 + t^7.735 + t^7.838 + 2*t^7.842 + t^7.858 + 2*t^7.873 + t^7.977 + t^7.993 + 2*t^7.996 - 3*t^8.012 + t^8.027 + t^8.047 + t^8.115 + t^8.147 + t^8.15 + t^8.181 + 2*t^8.269 + 2*t^8.304 + 2*t^8.423 + t^8.458 + t^8.546 - 3*t^8.561 + t^8.577 + 2*t^8.596 + t^8.612 + 2*t^8.7 - 4*t^8.716 + t^8.735 + 2*t^8.75 + t^8.838 - t^8.854 - t^8.87 + t^8.873 + 2*t^8.889 + t^8.905 + 2*t^8.976 - 6*t^8.992 - t^4.427/y - t^6.439/y - t^6.988/y - t^7.142/y - t^7.419/y + t^7.435/y + t^7.573/y + t^7.711/y + t^7.727/y + (2*t^7.865)/y + (2*t^8.004)/y + t^8.158/y + t^8.277/y + t^8.312/y + (2*t^8.415)/y - t^8.45/y + (2*t^8.554)/y + t^8.569/y + (3*t^8.708)/y + (2*t^8.846)/y + (2*t^8.862)/y + t^8.984/y - t^4.427*y - t^6.439*y - t^6.988*y - t^7.142*y - t^7.419*y + t^7.435*y + t^7.573*y + t^7.711*y + t^7.727*y + 2*t^7.865*y + 2*t^8.004*y + t^8.158*y + t^8.277*y + t^8.312*y + 2*t^8.415*y - t^8.45*y + 2*t^8.554*y + t^8.569*y + 3*t^8.708*y + 2*t^8.846*y + 2*t^8.862*y + t^8.984*y g1^7*t^2.012 + t^2.561/g1^6 + t^2.716/(g1*g2) + t^2.854/g1^2 + (2*g2*t^2.992)/g1^3 + g1^2*t^3.146 + (g1^7*t^3.3)/g2 + g1^14*t^4.023 + t^4.281/g1^3 + (g2*t^4.419)/g1^4 + (g1^2*t^4.435)/g2 + 2*g1*t^4.573 + g2*t^4.711 + (2*g1^6*t^4.727)/g2 + (g2^2*t^4.85)/g1 + 2*g1^5*t^4.865 + (g1^11*t^4.881)/g2^2 + 2*g1^4*g2*t^5.004 + t^5.123/g1^12 + g1^9*t^5.158 + t^5.277/(g1^7*g2) + (g1^14*t^5.312)/g2 + t^5.415/g1^8 + t^5.431/(g1^2*g2^2) + (g2*t^5.554)/g1^9 + (3*t^5.708)/g1^4 + (g2*t^5.846)/g1^5 + (g1*t^5.862)/g2 + (2*g2^2*t^5.984)/g1^6 - 3*t^6. + g1^21*t^6.035 + (g2*t^6.138)/g1 + 2*g1^4*t^6.292 + (g1^9*t^6.446)/g2 + 2*g1^8*t^6.585 + (g1^14*t^6.601)/g2^2 + g1^7*g2*t^6.723 + (2*g1^13*t^6.739)/g2 + t^6.842/g1^9 + g1^6*g2^2*t^6.861 + 2*g1^12*t^6.877 + (g1^18*t^6.893)/g2^2 + t^6.996/(g1^4*g2) + 2*g1^11*g2*t^7.015 + (2*t^7.135)/g1^5 + (g1*t^7.15)/g2^2 + g1^16*t^7.169 + (2*g2*t^7.273)/g1^6 + (2*t^7.289)/g2 + (g1^21*t^7.324)/g2 + (2*g2^2*t^7.411)/g1^7 + (2*t^7.427)/g1 + (2*g1^5*t^7.443)/g2^2 + (3*g2*t^7.565)/g1^2 + (g1^4*t^7.581)/g2 + (g1^10*t^7.597)/g2^3 + t^7.684/g1^18 + (2*g2^2*t^7.703)/g1^3 + 3*g1^3*t^7.719 + (g1^9*t^7.735)/g2^2 + t^7.838/(g1^13*g2) + (2*g2^3*t^7.842)/g1^4 + g1^2*g2*t^7.858 + (2*g1^8*t^7.873)/g2 + t^7.977/g1^14 + t^7.993/(g1^8*g2^2) + 2*g1*g2^2*t^7.996 - 3*g1^7*t^8.012 + (g1^13*t^8.027)/g2^2 + g1^28*t^8.047 + (g2*t^8.115)/g1^15 + t^8.147/(g1^3*g2^3) + g1^6*g2*t^8.15 + (g1^18*t^8.181)/g2^3 + (2*t^8.269)/g1^10 + 2*g1^11*t^8.304 + (2*t^8.423)/(g1^5*g2) + (g1^16*t^8.458)/g2 + (g2^2*t^8.546)/g1^12 - (3*t^8.561)/g1^6 + t^8.577/g2^2 + 2*g1^15*t^8.596 + (g1^21*t^8.612)/g2^2 + (2*g2*t^8.7)/g1^7 - (4*t^8.716)/(g1*g2) + g1^14*g2*t^8.735 + (2*g1^20*t^8.75)/g2 + (g2^2*t^8.838)/g1^8 - t^8.854/g1^2 - (g1^4*t^8.87)/g2^2 + g1^13*g2^2*t^8.873 + 2*g1^19*t^8.889 + (g1^25*t^8.905)/g2^2 + (2*g2^3*t^8.976)/g1^9 - (6*g2*t^8.992)/g1^3 - t^4.427/(g1*y) - (g1^6*t^6.439)/y - t^6.988/(g1^7*y) - t^7.142/(g1^2*g2*y) - (g2*t^7.419)/(g1^4*y) + (g1^2*t^7.435)/(g2*y) + (g1*t^7.573)/y + (g2*t^7.711)/y + (g1^6*t^7.727)/(g2*y) + (2*g1^5*t^7.865)/y + (2*g1^4*g2*t^8.004)/y + (g1^9*t^8.158)/y + t^8.277/(g1^7*g2*y) + (g1^14*t^8.312)/(g2*y) + (2*t^8.415)/(g1^8*y) - (g1^13*t^8.45)/y + (2*g2*t^8.554)/(g1^9*y) + t^8.569/(g1^3*g2*y) + (3*t^8.708)/(g1^4*y) + (2*g2*t^8.846)/(g1^5*y) + (2*g1*t^8.862)/(g2*y) + (g2^2*t^8.984)/(g1^6*y) - (t^4.427*y)/g1 - g1^6*t^6.439*y - (t^6.988*y)/g1^7 - (t^7.142*y)/(g1^2*g2) - (g2*t^7.419*y)/g1^4 + (g1^2*t^7.435*y)/g2 + g1*t^7.573*y + g2*t^7.711*y + (g1^6*t^7.727*y)/g2 + 2*g1^5*t^7.865*y + 2*g1^4*g2*t^8.004*y + g1^9*t^8.158*y + (t^8.277*y)/(g1^7*g2) + (g1^14*t^8.312*y)/g2 + (2*t^8.415*y)/g1^8 - g1^13*t^8.45*y + (2*g2*t^8.554*y)/g1^9 + (t^8.569*y)/(g1^3*g2) + (3*t^8.708*y)/g1^4 + (2*g2*t^8.846*y)/g1^5 + (2*g1*t^8.862*y)/g2 + (g2^2*t^8.984*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48288 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{6}$ 0.7083 0.8692 0.8149 [M:[0.9973, 1.0492, 1.0027, 0.8523, 0.9042, 0.9973], q:[0.4261, 0.5766], qb:[0.5246, 0.5712], phi:[0.4754]] t^2.557 + t^2.713 + t^2.852 + 2*t^2.992 + t^3.148 + t^3.304 + t^3.983 + t^4.278 + t^4.418 + t^4.434 + t^4.574 + t^4.714 + t^4.73 + t^4.853 + t^4.869 + t^4.885 + t^5.114 + t^5.269 + t^5.409 + t^5.425 + t^5.549 + 3*t^5.705 + t^5.844 + t^5.86 + 2*t^5.984 - 3*t^6. - t^4.426/y - t^4.426*y detail