Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55985 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ 0.6969 0.8688 0.8021 [M:[0.9948, 0.9339, 1.127, 0.873, 0.7513, 0.7513], q:[0.5992, 0.4061], qb:[0.4669, 0.7817], phi:[0.4365]] [M:[[-32], [-22], [12], [-12], [8], [8]], q:[[33], [-1]], qb:[[-11], [3]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$ ${}$ -3 2*t^2.254 + 2*t^2.619 + t^2.802 + t^2.984 + t^3.563 + t^3.929 + t^4.111 + t^4.143 + t^4.325 + 4*t^4.508 + 4*t^4.873 + t^4.904 + 2*t^5.056 + 5*t^5.238 + t^5.421 + 2*t^5.603 + t^5.786 + t^5.817 + t^5.969 - 3*t^6. + 2*t^6.183 + 2*t^6.365 + t^6.397 + 2*t^6.548 + t^6.579 + 2*t^6.73 + 6*t^6.762 + t^6.913 + t^6.944 + t^7.096 + 7*t^7.127 + 2*t^7.158 + 2*t^7.31 + 8*t^7.492 + t^7.524 + 2*t^7.675 + 8*t^7.857 - t^7.889 + 4*t^8.04 + t^8.071 + 5*t^8.222 - 7*t^8.254 + 2*t^8.405 + t^8.437 + t^8.468 + 2*t^8.588 - 3*t^8.619 + t^8.651 + t^8.77 + t^8.833 + t^8.953 - t^8.984 - t^4.31/y - (2*t^6.563)/y - t^6.929/y - t^7.111/y - t^7.294/y + t^7.325/y + (2*t^7.508)/y + t^7.69/y + (4*t^7.873)/y + (4*t^8.056)/y + (3*t^8.238)/y + (2*t^8.421)/y + (2*t^8.603)/y + t^8.786/y - t^8.817/y - t^4.31*y - 2*t^6.563*y - t^6.929*y - t^7.111*y - t^7.294*y + t^7.325*y + 2*t^7.508*y + t^7.69*y + 4*t^7.873*y + 4*t^8.056*y + 3*t^8.238*y + 2*t^8.421*y + 2*t^8.603*y + t^8.786*y - t^8.817*y 2*g1^8*t^2.254 + (2*t^2.619)/g1^12 + t^2.802/g1^22 + t^2.984/g1^32 + g1^2*t^3.563 + t^3.929/g1^18 + t^4.111/g1^28 + g1^36*t^4.143 + g1^26*t^4.325 + 4*g1^16*t^4.508 + (4*t^4.873)/g1^4 + g1^60*t^4.904 + (2*t^5.056)/g1^14 + (5*t^5.238)/g1^24 + t^5.421/g1^34 + (2*t^5.603)/g1^44 + t^5.786/g1^54 + g1^10*t^5.817 + t^5.969/g1^64 - 3*t^6. + (2*t^6.183)/g1^10 + (2*t^6.365)/g1^20 + g1^44*t^6.397 + (2*t^6.548)/g1^30 + g1^34*t^6.579 + (2*t^6.73)/g1^40 + 6*g1^24*t^6.762 + t^6.913/g1^50 + g1^14*t^6.944 + t^7.096/g1^60 + 7*g1^4*t^7.127 + 2*g1^68*t^7.158 + (2*t^7.31)/g1^6 + (8*t^7.492)/g1^16 + g1^48*t^7.524 + (2*t^7.675)/g1^26 + (8*t^7.857)/g1^36 - g1^28*t^7.889 + (4*t^8.04)/g1^46 + g1^18*t^8.071 + (5*t^8.222)/g1^56 - 7*g1^8*t^8.254 + (2*t^8.405)/g1^66 + t^8.437/g1^2 + g1^62*t^8.468 + (2*t^8.588)/g1^76 - (3*t^8.619)/g1^12 + g1^52*t^8.651 + t^8.77/g1^86 + g1^42*t^8.833 + t^8.953/g1^96 - t^8.984/g1^32 - t^4.31/(g1^6*y) - (2*g1^2*t^6.563)/y - t^6.929/(g1^18*y) - t^7.111/(g1^28*y) - t^7.294/(g1^38*y) + (g1^26*t^7.325)/y + (2*g1^16*t^7.508)/y + (g1^6*t^7.69)/y + (4*t^7.873)/(g1^4*y) + (4*t^8.056)/(g1^14*y) + (3*t^8.238)/(g1^24*y) + (2*t^8.421)/(g1^34*y) + (2*t^8.603)/(g1^44*y) + t^8.786/(g1^54*y) - (g1^10*t^8.817)/y - (t^4.31*y)/g1^6 - 2*g1^2*t^6.563*y - (t^6.929*y)/g1^18 - (t^7.111*y)/g1^28 - (t^7.294*y)/g1^38 + g1^26*t^7.325*y + 2*g1^16*t^7.508*y + g1^6*t^7.69*y + (4*t^7.873*y)/g1^4 + (4*t^8.056*y)/g1^14 + (3*t^8.238*y)/g1^24 + (2*t^8.421*y)/g1^34 + (2*t^8.603*y)/g1^44 + (t^8.786*y)/g1^54 - g1^10*t^8.817*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48278 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ 0.6779 0.8345 0.8124 [M:[0.9891, 0.93, 1.1291, 0.8709, 0.7527], q:[0.605, 0.4059], qb:[0.465, 0.7823], phi:[0.4355]] t^2.258 + 2*t^2.613 + t^2.79 + t^2.967 + t^3.565 + t^3.742 + t^3.919 + t^4.096 + t^4.162 + t^4.339 + 2*t^4.516 + 2*t^4.871 + t^4.936 + t^5.048 + 4*t^5.226 + t^5.403 + 2*t^5.58 + t^5.757 + t^5.935 - 2*t^6. - t^4.306/y - t^4.306*y detail