Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55961 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1\phi_1^2$ + $ \phi_1\tilde{q}_1^2$ + $ M_3M_4$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1q_2^2$ 0.6742 0.8507 0.7925 [X:[], M:[1.0583, 0.7084, 0.825, 1.175, 1.0626, 0.6999], q:[0.5271, 0.4146], qb:[0.7646, 0.4104], phi:[0.4708]] [X:[], M:[[4], [-20], [-12], [12], [-30], [48]], q:[[19], [-23]], qb:[[1], [11]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_2$, $ M_3$, $ \phi_1^2$, $ M_1$, $ M_5$, $ M_4$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_2M_6$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_2^2$, $ M_3M_6$, $ \phi_1q_1^2$, $ M_2M_3$, $ M_6\phi_1^2$, $ M_3^2$, $ M_2\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_6$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_2$, $ M_3\phi_1^2$, $ M_2M_5$, $ M_4M_6$, $ M_6q_2\tilde{q}_1$, $ M_1M_3$, $ M_2M_4$, $ \phi_1^4$, $ M_3M_5$, $ M_2q_2\tilde{q}_1$, $ M_6\phi_1\tilde{q}_2^2$ $M_2\phi_1\tilde{q}_2^2$ 0 t^2.1 + t^2.13 + t^2.48 + t^2.83 + t^3.17 + t^3.19 + t^3.52 + t^3.54 + t^3.87 + t^3.89 + t^4.2 + 2*t^4.22 + t^4.24 + t^4.25 + 2*t^4.57 + t^4.6 + t^4.92 + 2*t^4.95 + t^5.27 + t^5.29 + 2*t^5.3 + t^5.31 + t^5.62 + t^5.64 + 2*t^5.65 + t^5.66 + t^5.97 + 2*t^6.01 + t^6.3 + 2*t^6.32 + 2*t^6.35 + 3*t^6.36 + 2*t^6.38 + 2*t^6.67 + 3*t^6.7 + 2*t^6.71 + 2*t^6.73 + t^7.02 + 3*t^7.05 + t^7.06 + 2*t^7.08 + t^7.37 + t^7.39 + 3*t^7.4 + t^7.41 + 3*t^7.43 + t^7.44 + t^7.72 + t^7.74 + 2*t^7.75 + 2*t^7.76 + 3*t^7.78 + t^7.79 + t^8.07 + t^8.1 + t^8.11 + 2*t^8.14 + t^8.4 + 2*t^8.42 + 3*t^8.45 + t^8.46 + 2*t^8.48 + 3*t^8.49 + 2*t^8.5 + 2*t^8.77 + 4*t^8.8 + t^8.81 + t^8.83 + 3*t^8.84 + 2*t^8.85 - t^4.41/y - t^6.51/y - t^6.54/y + (2*t^7.22)/y + t^7.57/y + t^7.92/y + t^7.95/y + t^8.27/y + (2*t^8.29)/y + (2*t^8.3)/y + (2*t^8.31)/y - t^8.61/y + t^8.62/y + (2*t^8.65)/y + t^8.66/y + t^8.97/y + t^8.99/y - t^4.41*y - t^6.51*y - t^6.54*y + 2*t^7.22*y + t^7.57*y + t^7.92*y + t^7.95*y + t^8.27*y + 2*t^8.29*y + 2*t^8.3*y + 2*t^8.31*y - t^8.61*y + t^8.62*y + 2*t^8.65*y + t^8.66*y + t^8.97*y + t^8.99*y g1^48*t^2.1 + t^2.13/g1^20 + t^2.48/g1^12 + t^2.83/g1^4 + g1^4*t^3.17 + t^3.19/g1^30 + g1^12*t^3.52 + t^3.54/g1^22 + g1^20*t^3.87 + t^3.89/g1^14 + g1^96*t^4.2 + 2*g1^28*t^4.22 + t^4.24/g1^6 + t^4.25/g1^40 + 2*g1^36*t^4.57 + t^4.6/g1^32 + g1^44*t^4.92 + (2*t^4.95)/g1^24 + g1^52*t^5.27 + g1^18*t^5.29 + (2*t^5.3)/g1^16 + t^5.31/g1^50 + g1^60*t^5.62 + g1^26*t^5.64 + (2*t^5.65)/g1^8 + t^5.66/g1^42 + g1^68*t^5.97 + (2*t^6.01)/g1^34 + g1^144*t^6.3 + 2*g1^76*t^6.32 + 2*g1^8*t^6.35 + (3*t^6.36)/g1^26 + (2*t^6.38)/g1^60 + 2*g1^84*t^6.67 + 3*g1^16*t^6.7 + (2*t^6.71)/g1^18 + (2*t^6.73)/g1^52 + g1^92*t^7.02 + 3*g1^24*t^7.05 + t^7.06/g1^10 + (2*t^7.08)/g1^44 + g1^100*t^7.37 + g1^66*t^7.39 + 3*g1^32*t^7.4 + t^7.41/g1^2 + (3*t^7.43)/g1^36 + t^7.44/g1^70 + g1^108*t^7.72 + g1^74*t^7.74 + 2*g1^40*t^7.75 + 2*g1^6*t^7.76 + (3*t^7.78)/g1^28 + t^7.79/g1^62 + g1^116*t^8.07 + g1^48*t^8.1 + g1^14*t^8.11 + (2*t^8.14)/g1^54 + g1^192*t^8.4 + 2*g1^124*t^8.42 + 3*g1^56*t^8.45 + g1^22*t^8.46 + (2*t^8.48)/g1^12 + (3*t^8.49)/g1^46 + (2*t^8.5)/g1^80 + 2*g1^132*t^8.77 + 4*g1^64*t^8.8 + g1^30*t^8.81 + t^8.83/g1^4 + (3*t^8.84)/g1^38 + (2*t^8.85)/g1^72 - t^4.41/(g1^2*y) - (g1^46*t^6.51)/y - t^6.54/(g1^22*y) + (2*g1^28*t^7.22)/y + (g1^36*t^7.57)/y + (g1^44*t^7.92)/y + t^7.95/(g1^24*y) + (g1^52*t^8.27)/y + (2*g1^18*t^8.29)/y + (2*t^8.3)/(g1^16*y) + (2*t^8.31)/(g1^50*y) - (g1^94*t^8.61)/y + (g1^60*t^8.62)/y + (2*t^8.65)/(g1^8*y) + t^8.66/(g1^42*y) + (g1^68*t^8.97)/y + (g1^34*t^8.99)/y - (t^4.41*y)/g1^2 - g1^46*t^6.51*y - (t^6.54*y)/g1^22 + 2*g1^28*t^7.22*y + g1^36*t^7.57*y + g1^44*t^7.92*y + (t^7.95*y)/g1^24 + g1^52*t^8.27*y + 2*g1^18*t^8.29*y + (2*t^8.3*y)/g1^16 + (2*t^8.31*y)/g1^50 - g1^94*t^8.61*y + g1^60*t^8.62*y + (2*t^8.65*y)/g1^8 + (t^8.66*y)/g1^42 + g1^68*t^8.97*y + g1^34*t^8.99*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48226 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1\phi_1^2$ + $ \phi_1\tilde{q}_1^2$ + $ M_3M_4$ + $ M_5q_1\tilde{q}_2$ 0.6538 0.8126 0.8046 [X:[], M:[1.06, 0.6998, 0.8199, 1.1801, 1.0497], q:[0.5352, 0.4048], qb:[0.765, 0.4151], phi:[0.47]] t^2.1 + t^2.46 + t^2.82 + t^3.15 + t^3.18 + t^3.51 + t^3.54 + t^3.84 + t^3.87 + t^3.9 + t^4.2 + t^4.23 + t^4.26 + t^4.56 + t^4.62 + 2*t^4.92 + t^5.25 + 2*t^5.28 + t^5.61 + 2*t^5.64 + t^5.94 + 2*t^5.97 - t^4.41/y - t^4.41*y detail