Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55908 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2^2$ + $ M_5\phi_1^2$ + $ \phi_1\tilde{q}_2^2$ + $ M_6\phi_1q_2^2$ 0.6719 0.8383 0.8015 [X:[], M:[1.1688, 1.0, 0.8312, 0.7836, 1.1082, 0.6754], q:[0.3918, 0.4394], qb:[0.6082, 0.7771], phi:[0.4459]] [X:[], M:[[-3], [0], [3], [-8], [4], [-12]], q:[[-4], [7]], qb:[[4], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_4$, $ M_3$, $ M_2$, $ q_2\tilde{q}_1$, $ M_5$, $ M_1$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ M_6^2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_6$, $ M_4^2$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_6$, $ M_6q_2\tilde{q}_1$, $ M_2M_4$, $ M_5M_6$, $ M_2M_3$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_6$, $ M_3q_2\tilde{q}_1$, $ M_4M_5$, $ M_6\phi_1q_1^2$, $ M_3M_5$, $ M_1M_4$, $ M_6\phi_1q_1q_2$ . -1 t^2.03 + t^2.35 + t^2.49 + t^3. + t^3.14 + t^3.32 + t^3.51 + t^3.69 + t^3.83 + t^4.05 + t^4.16 + t^4.34 + t^4.38 + t^4.48 + t^4.52 + t^4.7 + t^4.84 + 2*t^4.99 + t^5.03 + t^5.17 + t^5.35 + t^5.49 + t^5.53 + t^5.64 + t^5.68 + t^5.71 + t^5.82 + t^5.86 - t^6. + t^6.04 + t^6.08 + 2*t^6.18 + t^6.29 + t^6.32 + t^6.36 + t^6.4 + t^6.47 + t^6.51 + t^6.55 + t^6.65 + t^6.69 + t^6.73 + 2*t^6.83 + t^6.87 + t^6.97 + 2*t^7.01 + 2*t^7.05 + 2*t^7.19 + t^7.34 + 2*t^7.38 + 2*t^7.48 + 2*t^7.52 + t^7.56 + t^7.62 + 2*t^7.66 + t^7.7 + t^7.74 + t^7.84 + t^7.88 + t^7.99 + t^8.03 + t^8.07 + t^8.1 + t^8.13 + t^8.17 + 2*t^8.21 + 2*t^8.31 - t^8.35 + 2*t^8.39 + t^8.43 - t^8.49 + 2*t^8.53 + t^8.57 + 2*t^8.68 + t^8.71 + t^8.75 + t^8.78 + t^8.82 + t^8.86 + t^8.9 + t^8.96 - t^4.34/y - t^6.36/y - t^6.69/y + t^7.38/y + t^7.52/y + t^7.84/y + t^7.99/y + t^8.03/y + t^8.17/y + t^8.31/y + (2*t^8.35)/y - t^8.39/y + (2*t^8.49)/y + t^8.53/y + t^8.64/y + t^8.68/y + t^8.82/y + (2*t^8.86)/y - t^4.34*y - t^6.36*y - t^6.69*y + t^7.38*y + t^7.52*y + t^7.84*y + t^7.99*y + t^8.03*y + t^8.17*y + t^8.31*y + 2*t^8.35*y - t^8.39*y + 2*t^8.49*y + t^8.53*y + t^8.64*y + t^8.68*y + t^8.82*y + 2*t^8.86*y t^2.03/g1^12 + t^2.35/g1^8 + g1^3*t^2.49 + t^3. + g1^11*t^3.14 + g1^4*t^3.32 + t^3.51/g1^3 + t^3.69/g1^10 + g1*t^3.83 + t^4.05/g1^24 + g1^5*t^4.16 + t^4.34/g1^2 + t^4.38/g1^20 + g1^9*t^4.48 + t^4.52/g1^9 + t^4.7/g1^16 + t^4.84/g1^5 + 2*g1^6*t^4.99 + t^5.03/g1^12 + t^5.17/g1 + t^5.35/g1^8 + g1^3*t^5.49 + t^5.53/g1^15 + g1^14*t^5.64 + t^5.68/g1^4 + t^5.71/g1^22 + g1^7*t^5.82 + t^5.86/g1^11 - t^6. + t^6.04/g1^18 + t^6.08/g1^36 + (2*t^6.18)/g1^7 + g1^22*t^6.29 + g1^4*t^6.32 + t^6.36/g1^14 + t^6.4/g1^32 + g1^15*t^6.47 + t^6.51/g1^3 + t^6.55/g1^21 + g1^8*t^6.65 + t^6.69/g1^10 + t^6.73/g1^28 + 2*g1*t^6.83 + t^6.87/g1^17 + g1^12*t^6.97 + (2*t^7.01)/g1^6 + (2*t^7.05)/g1^24 + (2*t^7.19)/g1^13 + t^7.34/g1^2 + (2*t^7.38)/g1^20 + 2*g1^9*t^7.48 + (2*t^7.52)/g1^9 + t^7.56/g1^27 + g1^20*t^7.62 + 2*g1^2*t^7.66 + t^7.7/g1^16 + t^7.74/g1^34 + t^7.84/g1^5 + t^7.88/g1^23 + g1^6*t^7.99 + t^8.03/g1^12 + t^8.07/g1^30 + t^8.1/g1^48 + g1^17*t^8.13 + t^8.17/g1 + (2*t^8.21)/g1^19 + 2*g1^10*t^8.31 - t^8.35/g1^8 + (2*t^8.39)/g1^26 + t^8.43/g1^44 - g1^3*t^8.49 + (2*t^8.53)/g1^15 + t^8.57/g1^33 + (2*t^8.68)/g1^4 + t^8.71/g1^22 + t^8.75/g1^40 + g1^25*t^8.78 + g1^7*t^8.82 + t^8.86/g1^11 + t^8.9/g1^29 + g1^18*t^8.96 - t^4.34/(g1^2*y) - t^6.36/(g1^14*y) - t^6.69/(g1^10*y) + t^7.38/(g1^20*y) + t^7.52/(g1^9*y) + t^7.84/(g1^5*y) + (g1^6*t^7.99)/y + t^8.03/(g1^12*y) + t^8.17/(g1*y) + (g1^10*t^8.31)/y + (2*t^8.35)/(g1^8*y) - t^8.39/(g1^26*y) + (2*g1^3*t^8.49)/y + t^8.53/(g1^15*y) + (g1^14*t^8.64)/y + t^8.68/(g1^4*y) + (g1^7*t^8.82)/y + (2*t^8.86)/(g1^11*y) - (t^4.34*y)/g1^2 - (t^6.36*y)/g1^14 - (t^6.69*y)/g1^10 + (t^7.38*y)/g1^20 + (t^7.52*y)/g1^9 + (t^7.84*y)/g1^5 + g1^6*t^7.99*y + (t^8.03*y)/g1^12 + (t^8.17*y)/g1 + g1^10*t^8.31*y + (2*t^8.35*y)/g1^8 - (t^8.39*y)/g1^26 + 2*g1^3*t^8.49*y + (t^8.53*y)/g1^15 + g1^14*t^8.64*y + (t^8.68*y)/g1^4 + g1^7*t^8.82*y + (2*t^8.86*y)/g1^11


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48161 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2^2$ + $ M_5\phi_1^2$ + $ \phi_1\tilde{q}_2^2$ 0.6511 0.7974 0.8166 [X:[], M:[1.1698, 1.0, 0.8302, 0.7862, 1.1069], q:[0.3931, 0.4371], qb:[0.6069, 0.7767], phi:[0.4465]] t^2.36 + t^2.49 + t^3. + t^3.13 + t^3.32 + t^3.51 + t^3.7 + t^3.83 + t^3.96 + t^4.15 + t^4.34 + t^4.47 + t^4.72 + t^4.85 + 2*t^4.98 + t^5.49 + t^5.62 + t^5.68 + t^5.81 - t^6. - t^4.34/y - t^4.34*y detail