Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55823 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_3$ 0.8964 1.1059 0.8105 [X:[], M:[0.7457, 0.7457, 0.7457], q:[0.6583, 0.596, 0.596], qb:[0.741, 0.741, 0.596], phi:[0.5179]] [X:[], M:[[0, 1, -3, -3, 1], [1, 0, -3, -3, 1], [1, 1, -3, -3, 0]], q:[[-1, -1, 3, 3, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, 0, -1, -1, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_2$, $ M_1$, $ \phi_1^2$, $ q_2q_3$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_2M_3$, $ M_1M_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1q_3$, $ \phi_1q_1q_2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ M_3q_2q_3$, $ M_2q_2q_3$, $ M_3q_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_1q_3\tilde{q}_3$ . -11 3*t^2.24 + t^3.11 + 3*t^3.58 + 6*t^4.01 + 2*t^4.2 + t^4.45 + 6*t^4.47 + 6*t^5.13 + 3*t^5.32 + 3*t^5.34 + t^5.5 + 6*t^5.81 - 11*t^6. - 3*t^6.19 + t^6.21 + 16*t^6.25 + 6*t^6.68 + 10*t^6.71 + 6*t^7.15 - t^7.34 + 15*t^7.37 + 6*t^7.58 + 16*t^7.59 + 15*t^8.02 + 10*t^8.05 + 6*t^8.21 - 24*t^8.24 + 2*t^8.4 + 3*t^8.45 + 30*t^8.49 + t^8.61 - 6*t^8.67 + 15*t^8.71 - 2*t^8.89 + 12*t^8.92 + 15*t^8.95 - t^4.55/y - (3*t^6.79)/y + t^7.45/y + (3*t^7.47)/y - t^7.66/y + (3*t^8.32)/y + (3*t^8.34)/y + (9*t^8.81)/y - t^4.55*y - 3*t^6.79*y + t^7.45*y + 3*t^7.47*y - t^7.66*y + 3*t^8.32*y + 3*t^8.34*y + 9*t^8.81*y (g1*g2*t^2.24)/(g3^3*g4^3) + (g1*g5*t^2.24)/(g3^3*g4^3) + (g2*g5*t^2.24)/(g3^3*g4^3) + t^3.11/(g3^2*g4^2) + g1*g2*t^3.58 + g1*g5*t^3.58 + g2*g5*t^3.58 + g1*g3*t^4.01 + g2*g3*t^4.01 + g1*g4*t^4.01 + g2*g4*t^4.01 + g3*g5*t^4.01 + g4*g5*t^4.01 + (g3^4*g4^3*t^4.2)/(g1*g2*g5) + (g3^3*g4^4*t^4.2)/(g1*g2*g5) + g3*g4*t^4.45 + (g1^2*g2^2*t^4.47)/(g3^6*g4^6) + (g1^2*g2*g5*t^4.47)/(g3^6*g4^6) + (g1*g2^2*g5*t^4.47)/(g3^6*g4^6) + (g1^2*g5^2*t^4.47)/(g3^6*g4^6) + (g1*g2*g5^2*t^4.47)/(g3^6*g4^6) + (g2^2*g5^2*t^4.47)/(g3^6*g4^6) + (g1^2*t^5.13)/(g3*g4) + (g1*g2*t^5.13)/(g3*g4) + (g2^2*t^5.13)/(g3*g4) + (g1*g5*t^5.13)/(g3*g4) + (g2*g5*t^5.13)/(g3*g4) + (g5^2*t^5.13)/(g3*g4) + (g3^2*g4^2*t^5.32)/(g1*g2) + (g3^2*g4^2*t^5.32)/(g1*g5) + (g3^2*g4^2*t^5.32)/(g2*g5) + (g1*g2*t^5.34)/(g3^5*g4^5) + (g1*g5*t^5.34)/(g3^5*g4^5) + (g2*g5*t^5.34)/(g3^5*g4^5) + (g3^5*g4^5*t^5.5)/(g1^2*g2^2*g5^2) + (g1^2*g2^2*t^5.81)/(g3^3*g4^3) + (g1^2*g2*g5*t^5.81)/(g3^3*g4^3) + (g1*g2^2*g5*t^5.81)/(g3^3*g4^3) + (g1^2*g5^2*t^5.81)/(g3^3*g4^3) + (g1*g2*g5^2*t^5.81)/(g3^3*g4^3) + (g2^2*g5^2*t^5.81)/(g3^3*g4^3) - 5*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g1*t^6.)/g5 - (g2*t^6.)/g5 - (g5*t^6.)/g1 - (g5*t^6.)/g2 - (g3^3*g4^3*t^6.19)/(g1*g2*g5^2) - (g3^3*g4^3*t^6.19)/(g1*g2^2*g5) - (g3^3*g4^3*t^6.19)/(g1^2*g2*g5) + t^6.21/(g3^4*g4^4) + (g1^2*g2*t^6.25)/(g3^2*g4^3) + (g1*g2^2*t^6.25)/(g3^2*g4^3) + (g1^2*g2*t^6.25)/(g3^3*g4^2) + (g1*g2^2*t^6.25)/(g3^3*g4^2) + (g1^2*g5*t^6.25)/(g3^2*g4^3) + (2*g1*g2*g5*t^6.25)/(g3^2*g4^3) + (g2^2*g5*t^6.25)/(g3^2*g4^3) + (g1^2*g5*t^6.25)/(g3^3*g4^2) + (2*g1*g2*g5*t^6.25)/(g3^3*g4^2) + (g2^2*g5*t^6.25)/(g3^3*g4^2) + (g1*g5^2*t^6.25)/(g3^2*g4^3) + (g2*g5^2*t^6.25)/(g3^2*g4^3) + (g1*g5^2*t^6.25)/(g3^3*g4^2) + (g2*g5^2*t^6.25)/(g3^3*g4^2) + (2*g1*g2*t^6.68)/(g3^2*g4^2) + (2*g1*g5*t^6.68)/(g3^2*g4^2) + (2*g2*g5*t^6.68)/(g3^2*g4^2) + (g1^3*g2^3*t^6.71)/(g3^9*g4^9) + (g1^3*g2^2*g5*t^6.71)/(g3^9*g4^9) + (g1^2*g2^3*g5*t^6.71)/(g3^9*g4^9) + (g1^3*g2*g5^2*t^6.71)/(g3^9*g4^9) + (g1^2*g2^2*g5^2*t^6.71)/(g3^9*g4^9) + (g1*g2^3*g5^2*t^6.71)/(g3^9*g4^9) + (g1^3*g5^3*t^6.71)/(g3^9*g4^9) + (g1^2*g2*g5^3*t^6.71)/(g3^9*g4^9) + (g1*g2^2*g5^3*t^6.71)/(g3^9*g4^9) + (g2^3*g5^3*t^6.71)/(g3^9*g4^9) + g1^2*g2^2*t^7.15 + g1^2*g2*g5*t^7.15 + g1*g2^2*g5*t^7.15 + g1^2*g5^2*t^7.15 + g1*g2*g5^2*t^7.15 + g2^2*g5^2*t^7.15 - g3^3*g4^3*t^7.34 + (g1^3*g2*t^7.37)/(g3^4*g4^4) + (g1^2*g2^2*t^7.37)/(g3^4*g4^4) + (g1*g2^3*t^7.37)/(g3^4*g4^4) + (g1^3*g5*t^7.37)/(g3^4*g4^4) + (2*g1^2*g2*g5*t^7.37)/(g3^4*g4^4) + (2*g1*g2^2*g5*t^7.37)/(g3^4*g4^4) + (g2^3*g5*t^7.37)/(g3^4*g4^4) + (g1^2*g5^2*t^7.37)/(g3^4*g4^4) + (2*g1*g2*g5^2*t^7.37)/(g3^4*g4^4) + (g2^2*g5^2*t^7.37)/(g3^4*g4^4) + (g1*g5^3*t^7.37)/(g3^4*g4^4) + (g2*g5^3*t^7.37)/(g3^4*g4^4) + (g1^2*g2^2*t^7.58)/(g3^8*g4^8) + (g1^2*g2*g5*t^7.58)/(g3^8*g4^8) + (g1*g2^2*g5*t^7.58)/(g3^8*g4^8) + (g1^2*g5^2*t^7.58)/(g3^8*g4^8) + (g1*g2*g5^2*t^7.58)/(g3^8*g4^8) + (g2^2*g5^2*t^7.58)/(g3^8*g4^8) + g1^2*g2*g3*t^7.59 + g1*g2^2*g3*t^7.59 + g1^2*g2*g4*t^7.59 + g1*g2^2*g4*t^7.59 + g1^2*g3*g5*t^7.59 + 2*g1*g2*g3*g5*t^7.59 + g2^2*g3*g5*t^7.59 + g1^2*g4*g5*t^7.59 + 2*g1*g2*g4*g5*t^7.59 + g2^2*g4*g5*t^7.59 + g1*g3*g5^2*t^7.59 + g2*g3*g5^2*t^7.59 + g1*g4*g5^2*t^7.59 + g2*g4*g5^2*t^7.59 + g1^2*g3^2*t^8.02 + g1*g2*g3^2*t^8.02 + g2^2*g3^2*t^8.02 + g1*g2*g3*g4*t^8.02 + g1^2*g4^2*t^8.02 + g1*g2*g4^2*t^8.02 + g2^2*g4^2*t^8.02 + g1*g3^2*g5*t^8.02 + g2*g3^2*g5*t^8.02 + g1*g3*g4*g5*t^8.02 + g2*g3*g4*g5*t^8.02 + g1*g4^2*g5*t^8.02 + g2*g4^2*g5*t^8.02 + g3^2*g5^2*t^8.02 + g4^2*g5^2*t^8.02 + (g1^3*g2^3*t^8.05)/(g3^6*g4^6) + (g1^3*g2^2*g5*t^8.05)/(g3^6*g4^6) + (g1^2*g2^3*g5*t^8.05)/(g3^6*g4^6) + (g1^3*g2*g5^2*t^8.05)/(g3^6*g4^6) + (g1^2*g2^2*g5^2*t^8.05)/(g3^6*g4^6) + (g1*g2^3*g5^2*t^8.05)/(g3^6*g4^6) + (g1^3*g5^3*t^8.05)/(g3^6*g4^6) + (g1^2*g2*g5^3*t^8.05)/(g3^6*g4^6) + (g1*g2^2*g5^3*t^8.05)/(g3^6*g4^6) + (g2^3*g5^3*t^8.05)/(g3^6*g4^6) + (g3^5*g4^3*t^8.21)/(g1*g2) + (g3^3*g4^5*t^8.21)/(g1*g2) + (g3^5*g4^3*t^8.21)/(g1*g5) + (g3^5*g4^3*t^8.21)/(g2*g5) + (g3^3*g4^5*t^8.21)/(g1*g5) + (g3^3*g4^5*t^8.21)/(g2*g5) - (g1^2*t^8.24)/(g3^3*g4^3) - (5*g1*g2*t^8.24)/(g3^3*g4^3) - (g2^2*t^8.24)/(g3^3*g4^3) - (g1^2*g2*t^8.24)/(g3^3*g4^3*g5) - (g1*g2^2*t^8.24)/(g3^3*g4^3*g5) - (5*g1*g5*t^8.24)/(g3^3*g4^3) - (g1^2*g5*t^8.24)/(g2*g3^3*g4^3) - (5*g2*g5*t^8.24)/(g3^3*g4^3) - (g2^2*g5*t^8.24)/(g1*g3^3*g4^3) - (g5^2*t^8.24)/(g3^3*g4^3) - (g1*g5^2*t^8.24)/(g2*g3^3*g4^3) - (g2*g5^2*t^8.24)/(g1*g3^3*g4^3) + (g3^8*g4^6*t^8.4)/(g1^2*g2^2*g5^2) + (g3^6*g4^8*t^8.4)/(g1^2*g2^2*g5^2) + (g1*g2*t^8.45)/(g3^7*g4^7) + (g1*g5*t^8.45)/(g3^7*g4^7) + (g2*g5*t^8.45)/(g3^7*g4^7) + (g1^3*g2^2*t^8.49)/(g3^5*g4^6) + (g1^2*g2^3*t^8.49)/(g3^5*g4^6) + (g1^3*g2^2*t^8.49)/(g3^6*g4^5) + (g1^2*g2^3*t^8.49)/(g3^6*g4^5) + (g1^3*g2*g5*t^8.49)/(g3^5*g4^6) + (2*g1^2*g2^2*g5*t^8.49)/(g3^5*g4^6) + (g1*g2^3*g5*t^8.49)/(g3^5*g4^6) + (g1^3*g2*g5*t^8.49)/(g3^6*g4^5) + (2*g1^2*g2^2*g5*t^8.49)/(g3^6*g4^5) + (g1*g2^3*g5*t^8.49)/(g3^6*g4^5) + (g1^3*g5^2*t^8.49)/(g3^5*g4^6) + (2*g1^2*g2*g5^2*t^8.49)/(g3^5*g4^6) + (2*g1*g2^2*g5^2*t^8.49)/(g3^5*g4^6) + (g2^3*g5^2*t^8.49)/(g3^5*g4^6) + (g1^3*g5^2*t^8.49)/(g3^6*g4^5) + (2*g1^2*g2*g5^2*t^8.49)/(g3^6*g4^5) + (2*g1*g2^2*g5^2*t^8.49)/(g3^6*g4^5) + (g2^3*g5^2*t^8.49)/(g3^6*g4^5) + (g1^2*g5^3*t^8.49)/(g3^5*g4^6) + (g1*g2*g5^3*t^8.49)/(g3^5*g4^6) + (g2^2*g5^3*t^8.49)/(g3^5*g4^6) + (g1^2*g5^3*t^8.49)/(g3^6*g4^5) + (g1*g2*g5^3*t^8.49)/(g3^6*g4^5) + (g2^2*g5^3*t^8.49)/(g3^6*g4^5) + (g3^3*g4^3*t^8.61)/(g1^2*g2^2*g5^2) - (g1*t^8.67)/(g3^2*g4^3) - (g2*t^8.67)/(g3^2*g4^3) - (g1*t^8.67)/(g3^3*g4^2) - (g2*t^8.67)/(g3^3*g4^2) - (g5*t^8.67)/(g3^2*g4^3) - (g5*t^8.67)/(g3^3*g4^2) + (g1^3*g2*t^8.71)/(g3*g4) + (g1^2*g2^2*t^8.71)/(g3*g4) + (g1*g2^3*t^8.71)/(g3*g4) + (g1^3*g5*t^8.71)/(g3*g4) + (2*g1^2*g2*g5*t^8.71)/(g3*g4) + (2*g1*g2^2*g5*t^8.71)/(g3*g4) + (g2^3*g5*t^8.71)/(g3*g4) + (g1^2*g5^2*t^8.71)/(g3*g4) + (2*g1*g2*g5^2*t^8.71)/(g3*g4) + (g2^2*g5^2*t^8.71)/(g3*g4) + (g1*g5^3*t^8.71)/(g3*g4) + (g2*g5^3*t^8.71)/(g3*g4) - g3^3*g4*t^8.89 - g3*g4^3*t^8.89 + (2*g1^2*g2^2*t^8.92)/(g3^5*g4^5) + (2*g1^2*g2*g5*t^8.92)/(g3^5*g4^5) + (2*g1*g2^2*g5*t^8.92)/(g3^5*g4^5) + (2*g1^2*g5^2*t^8.92)/(g3^5*g4^5) + (2*g1*g2*g5^2*t^8.92)/(g3^5*g4^5) + (2*g2^2*g5^2*t^8.92)/(g3^5*g4^5) + (g1^4*g2^4*t^8.95)/(g3^12*g4^12) + (g1^4*g2^3*g5*t^8.95)/(g3^12*g4^12) + (g1^3*g2^4*g5*t^8.95)/(g3^12*g4^12) + (g1^4*g2^2*g5^2*t^8.95)/(g3^12*g4^12) + (g1^3*g2^3*g5^2*t^8.95)/(g3^12*g4^12) + (g1^2*g2^4*g5^2*t^8.95)/(g3^12*g4^12) + (g1^4*g2*g5^3*t^8.95)/(g3^12*g4^12) + (g1^3*g2^2*g5^3*t^8.95)/(g3^12*g4^12) + (g1^2*g2^3*g5^3*t^8.95)/(g3^12*g4^12) + (g1*g2^4*g5^3*t^8.95)/(g3^12*g4^12) + (g1^4*g5^4*t^8.95)/(g3^12*g4^12) + (g1^3*g2*g5^4*t^8.95)/(g3^12*g4^12) + (g1^2*g2^2*g5^4*t^8.95)/(g3^12*g4^12) + (g1*g2^3*g5^4*t^8.95)/(g3^12*g4^12) + (g2^4*g5^4*t^8.95)/(g3^12*g4^12) - t^4.55/(g3*g4*y) - (g1*g2*t^6.79)/(g3^4*g4^4*y) - (g1*g5*t^6.79)/(g3^4*g4^4*y) - (g2*g5*t^6.79)/(g3^4*g4^4*y) + (g3*g4*t^7.45)/y + (g1^2*g2*g5*t^7.47)/(g3^6*g4^6*y) + (g1*g2^2*g5*t^7.47)/(g3^6*g4^6*y) + (g1*g2*g5^2*t^7.47)/(g3^6*g4^6*y) - t^7.66/(g3^3*g4^3*y) + (g3^2*g4^2*t^8.32)/(g1*g2*y) + (g3^2*g4^2*t^8.32)/(g1*g5*y) + (g3^2*g4^2*t^8.32)/(g2*g5*y) + (g1*g2*t^8.34)/(g3^5*g4^5*y) + (g1*g5*t^8.34)/(g3^5*g4^5*y) + (g2*g5*t^8.34)/(g3^5*g4^5*y) + (g1^2*g2^2*t^8.81)/(g3^3*g4^3*y) + (2*g1^2*g2*g5*t^8.81)/(g3^3*g4^3*y) + (2*g1*g2^2*g5*t^8.81)/(g3^3*g4^3*y) + (g1^2*g5^2*t^8.81)/(g3^3*g4^3*y) + (2*g1*g2*g5^2*t^8.81)/(g3^3*g4^3*y) + (g2^2*g5^2*t^8.81)/(g3^3*g4^3*y) - (t^4.55*y)/(g3*g4) - (g1*g2*t^6.79*y)/(g3^4*g4^4) - (g1*g5*t^6.79*y)/(g3^4*g4^4) - (g2*g5*t^6.79*y)/(g3^4*g4^4) + g3*g4*t^7.45*y + (g1^2*g2*g5*t^7.47*y)/(g3^6*g4^6) + (g1*g2^2*g5*t^7.47*y)/(g3^6*g4^6) + (g1*g2*g5^2*t^7.47*y)/(g3^6*g4^6) - (t^7.66*y)/(g3^3*g4^3) + (g3^2*g4^2*t^8.32*y)/(g1*g2) + (g3^2*g4^2*t^8.32*y)/(g1*g5) + (g3^2*g4^2*t^8.32*y)/(g2*g5) + (g1*g2*t^8.34*y)/(g3^5*g4^5) + (g1*g5*t^8.34*y)/(g3^5*g4^5) + (g2*g5*t^8.34*y)/(g3^5*g4^5) + (g1^2*g2^2*t^8.81*y)/(g3^3*g4^3) + (2*g1^2*g2*g5*t^8.81*y)/(g3^3*g4^3) + (2*g1*g2^2*g5*t^8.81*y)/(g3^3*g4^3) + (g1^2*g5^2*t^8.81*y)/(g3^3*g4^3) + (2*g1*g2*g5^2*t^8.81*y)/(g3^3*g4^3) + (g2^2*g5^2*t^8.81*y)/(g3^3*g4^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55670 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ 0.878 1.0728 0.8184 [X:[], M:[0.7561, 0.7561], q:[0.639, 0.6049, 0.6049], qb:[0.737, 0.737, 0.5735], phi:[0.5259]] 2*t^2.27 + t^3.16 + 2*t^3.54 + t^3.63 + t^3.64 + 2*t^3.93 + 4*t^4.03 + 2*t^4.13 + t^4.42 + 3*t^4.54 + t^5.02 + 2*t^5.11 + 3*t^5.21 + t^5.22 + 2*t^5.31 + t^5.41 + 2*t^5.42 + 3*t^5.8 - 7*t^6. - t^4.58/y - t^4.58*y detail