Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55821 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2q_3$ + $ M_4\phi_1^2$ | 0.9297 | 1.1696 | 0.7949 | [X:[], M:[0.7189, 0.7189, 0.7189, 0.8584], q:[0.6406, 0.6406, 0.6406], qb:[0.5984, 0.5984, 0.5984], phi:[0.5708]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [-4, 0, -4, 0, 0, 0], [0, -4, -4, 0, 0, 0], [2, 2, 2, 2, 2, 2]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ M_1^2$, $ M_2^2$, $ M_3^2$, $ M_2M_3$, $ M_1M_3$, $ M_1M_2$, $ M_3M_4$, $ M_2M_4$, $ M_1M_4$, $ M_4^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1q_3$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_1$, $ M_3q_3\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_3q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$ | . | -18 | 3*t^2.16 + t^2.58 + 3*t^3.59 + 9*t^3.72 + 6*t^4.31 + 3*t^4.73 + t^5.15 + 6*t^5.3 + 9*t^5.43 + 6*t^5.56 + 9*t^5.75 + 18*t^5.87 - 18*t^6. - 9*t^6.13 + 3*t^6.17 + 9*t^6.29 + 10*t^6.47 + 6*t^6.89 + 6*t^7.18 + 27*t^7.31 + 36*t^7.43 + 18*t^7.46 - 3*t^7.56 + 18*t^7.59 + t^7.71 + t^7.73 - 9*t^7.84 + 18*t^7.9 + 27*t^8.03 - 48*t^8.16 - 18*t^8.28 + 9*t^8.32 + 6*t^8.41 + 18*t^8.45 - 18*t^8.58 + 15*t^8.63 - 9*t^8.7 + 3*t^8.74 + 9*t^8.87 + 15*t^8.89 - t^4.71/y - (3*t^6.87)/y + (3*t^7.31)/y + (3*t^7.73)/y + (3*t^8.56)/y + (9*t^8.75)/y + (27*t^8.87)/y - t^4.71*y - 3*t^6.87*y + 3*t^7.31*y + 3*t^7.73*y + 3*t^8.56*y + 9*t^8.75*y + 27*t^8.87*y | t^2.16/(g1^4*g2^4) + t^2.16/(g1^4*g3^4) + t^2.16/(g2^4*g3^4) + g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^2.58 + g4^4*g5^4*t^3.59 + g4^4*g6^4*t^3.59 + g5^4*g6^4*t^3.59 + g1^4*g4^4*t^3.72 + g2^4*g4^4*t^3.72 + g3^4*g4^4*t^3.72 + g1^4*g5^4*t^3.72 + g2^4*g5^4*t^3.72 + g3^4*g5^4*t^3.72 + g1^4*g6^4*t^3.72 + g2^4*g6^4*t^3.72 + g3^4*g6^4*t^3.72 + t^4.31/(g1^8*g2^8) + t^4.31/(g1^8*g3^8) + t^4.31/(g2^8*g3^8) + t^4.31/(g1^4*g2^4*g3^8) + t^4.31/(g1^4*g2^8*g3^4) + t^4.31/(g1^8*g2^4*g3^4) + (g1^2*g4^2*g5^2*g6^2*t^4.73)/(g2^2*g3^2) + (g2^2*g4^2*g5^2*g6^2*t^4.73)/(g1^2*g3^2) + (g3^2*g4^2*g5^2*g6^2*t^4.73)/(g1^2*g2^2) + g1^4*g2^4*g3^4*g4^4*g5^4*g6^4*t^5.15 + (g4^7*t^5.3)/(g1*g2*g3*g5*g6) + (g4^3*g5^3*t^5.3)/(g1*g2*g3*g6) + (g5^7*t^5.3)/(g1*g2*g3*g4*g6) + (g4^3*g6^3*t^5.3)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.3)/(g1*g2*g3*g4) + (g6^7*t^5.3)/(g1*g2*g3*g4*g5) + (g1^3*g4^3*t^5.43)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.43)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.43)/(g1*g2*g5*g6) + (g1^3*g5^3*t^5.43)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.43)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.43)/(g1*g2*g4*g6) + (g1^3*g6^3*t^5.43)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.43)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.43)/(g1*g2*g4*g5) + (g1^7*t^5.56)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.56)/(g3*g4*g5*g6) + (g2^7*t^5.56)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.56)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.56)/(g1*g4*g5*g6) + (g3^7*t^5.56)/(g1*g2*g4*g5*g6) + (g4^4*g5^4*t^5.75)/(g1^4*g2^4) + (g4^4*g5^4*t^5.75)/(g1^4*g3^4) + (g4^4*g5^4*t^5.75)/(g2^4*g3^4) + (g4^4*g6^4*t^5.75)/(g1^4*g2^4) + (g4^4*g6^4*t^5.75)/(g1^4*g3^4) + (g4^4*g6^4*t^5.75)/(g2^4*g3^4) + (g5^4*g6^4*t^5.75)/(g1^4*g2^4) + (g5^4*g6^4*t^5.75)/(g1^4*g3^4) + (g5^4*g6^4*t^5.75)/(g2^4*g3^4) + (g4^4*t^5.87)/g1^4 + (g4^4*t^5.87)/g2^4 + (g4^4*t^5.87)/g3^4 + (g1^4*g4^4*t^5.87)/(g2^4*g3^4) + (g2^4*g4^4*t^5.87)/(g1^4*g3^4) + (g3^4*g4^4*t^5.87)/(g1^4*g2^4) + (g5^4*t^5.87)/g1^4 + (g5^4*t^5.87)/g2^4 + (g5^4*t^5.87)/g3^4 + (g1^4*g5^4*t^5.87)/(g2^4*g3^4) + (g2^4*g5^4*t^5.87)/(g1^4*g3^4) + (g3^4*g5^4*t^5.87)/(g1^4*g2^4) + (g6^4*t^5.87)/g1^4 + (g6^4*t^5.87)/g2^4 + (g6^4*t^5.87)/g3^4 + (g1^4*g6^4*t^5.87)/(g2^4*g3^4) + (g2^4*g6^4*t^5.87)/(g1^4*g3^4) + (g3^4*g6^4*t^5.87)/(g1^4*g2^4) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g4^4 - (g4^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g4^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.13)/g4^4 - (g2^4*t^6.13)/g4^4 - (g3^4*t^6.13)/g4^4 - (g1^4*t^6.13)/g5^4 - (g2^4*t^6.13)/g5^4 - (g3^4*t^6.13)/g5^4 - (g1^4*t^6.13)/g6^4 - (g2^4*t^6.13)/g6^4 - (g3^4*t^6.13)/g6^4 + g1^2*g2^2*g3^2*g4^6*g5^6*g6^2*t^6.17 + g1^2*g2^2*g3^2*g4^6*g5^2*g6^6*t^6.17 + g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*t^6.17 + g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*t^6.29 + g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*t^6.29 + g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*t^6.29 + g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*t^6.29 + g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*t^6.29 + g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*t^6.29 + g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*t^6.29 + g1^2*g2^6*g3^2*g4^2*g5^2*g6^6*t^6.29 + g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*t^6.29 + t^6.47/(g1^12*g2^12) + t^6.47/(g1^12*g3^12) + t^6.47/(g2^12*g3^12) + t^6.47/(g1^4*g2^8*g3^12) + t^6.47/(g1^8*g2^4*g3^12) + t^6.47/(g1^4*g2^12*g3^8) + t^6.47/(g1^8*g2^8*g3^8) + t^6.47/(g1^12*g2^4*g3^8) + t^6.47/(g1^8*g2^12*g3^4) + t^6.47/(g1^12*g2^8*g3^4) + (g1^2*g4^2*g5^2*g6^2*t^6.89)/(g2^6*g3^6) + (g4^2*g5^2*g6^2*t^6.89)/(g1^2*g2^2*g3^6) + (g2^2*g4^2*g5^2*g6^2*t^6.89)/(g1^6*g3^6) + (g4^2*g5^2*g6^2*t^6.89)/(g1^2*g2^6*g3^2) + (g4^2*g5^2*g6^2*t^6.89)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*g5^2*g6^2*t^6.89)/(g1^6*g2^6) + g4^8*g5^8*t^7.18 + g4^8*g5^4*g6^4*t^7.18 + g4^4*g5^8*g6^4*t^7.18 + g4^8*g6^8*t^7.18 + g4^4*g5^4*g6^8*t^7.18 + g5^8*g6^8*t^7.18 + g1^4*g4^8*g5^4*t^7.31 + g2^4*g4^8*g5^4*t^7.31 + g3^4*g4^8*g5^4*t^7.31 + g1^4*g4^4*g5^8*t^7.31 + g2^4*g4^4*g5^8*t^7.31 + g3^4*g4^4*g5^8*t^7.31 + g1^4*g4^8*g6^4*t^7.31 + g2^4*g4^8*g6^4*t^7.31 + g3^4*g4^8*g6^4*t^7.31 + 3*g1^4*g4^4*g5^4*g6^4*t^7.31 + 3*g2^4*g4^4*g5^4*g6^4*t^7.31 + 3*g3^4*g4^4*g5^4*g6^4*t^7.31 + g1^4*g5^8*g6^4*t^7.31 + g2^4*g5^8*g6^4*t^7.31 + g3^4*g5^8*g6^4*t^7.31 + g1^4*g4^4*g6^8*t^7.31 + g2^4*g4^4*g6^8*t^7.31 + g3^4*g4^4*g6^8*t^7.31 + g1^4*g5^4*g6^8*t^7.31 + g2^4*g5^4*g6^8*t^7.31 + g3^4*g5^4*g6^8*t^7.31 + g1^8*g4^8*t^7.43 + g1^4*g2^4*g4^8*t^7.43 + g2^8*g4^8*t^7.43 + g1^4*g3^4*g4^8*t^7.43 + g2^4*g3^4*g4^8*t^7.43 + g3^8*g4^8*t^7.43 + g1^8*g4^4*g5^4*t^7.43 + g1^4*g2^4*g4^4*g5^4*t^7.43 + g2^8*g4^4*g5^4*t^7.43 + g1^4*g3^4*g4^4*g5^4*t^7.43 + g2^4*g3^4*g4^4*g5^4*t^7.43 + g3^8*g4^4*g5^4*t^7.43 + g1^8*g5^8*t^7.43 + g1^4*g2^4*g5^8*t^7.43 + g2^8*g5^8*t^7.43 + g1^4*g3^4*g5^8*t^7.43 + g2^4*g3^4*g5^8*t^7.43 + g3^8*g5^8*t^7.43 + g1^8*g4^4*g6^4*t^7.43 + g1^4*g2^4*g4^4*g6^4*t^7.43 + g2^8*g4^4*g6^4*t^7.43 + g1^4*g3^4*g4^4*g6^4*t^7.43 + g2^4*g3^4*g4^4*g6^4*t^7.43 + g3^8*g4^4*g6^4*t^7.43 + g1^8*g5^4*g6^4*t^7.43 + g1^4*g2^4*g5^4*g6^4*t^7.43 + g2^8*g5^4*g6^4*t^7.43 + g1^4*g3^4*g5^4*g6^4*t^7.43 + g2^4*g3^4*g5^4*g6^4*t^7.43 + g3^8*g5^4*g6^4*t^7.43 + g1^8*g6^8*t^7.43 + g1^4*g2^4*g6^8*t^7.43 + g2^8*g6^8*t^7.43 + g1^4*g3^4*g6^8*t^7.43 + g2^4*g3^4*g6^8*t^7.43 + g3^8*g6^8*t^7.43 + (g4^7*t^7.46)/(g1*g2^5*g3^5*g5*g6) + (g4^7*t^7.46)/(g1^5*g2*g3^5*g5*g6) + (g4^7*t^7.46)/(g1^5*g2^5*g3*g5*g6) + (g4^3*g5^3*t^7.46)/(g1*g2^5*g3^5*g6) + (g4^3*g5^3*t^7.46)/(g1^5*g2*g3^5*g6) + (g4^3*g5^3*t^7.46)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.46)/(g1*g2^5*g3^5*g4*g6) + (g5^7*t^7.46)/(g1^5*g2*g3^5*g4*g6) + (g5^7*t^7.46)/(g1^5*g2^5*g3*g4*g6) + (g4^3*g6^3*t^7.46)/(g1*g2^5*g3^5*g5) + (g4^3*g6^3*t^7.46)/(g1^5*g2*g3^5*g5) + (g4^3*g6^3*t^7.46)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.46)/(g1*g2^5*g3^5*g4) + (g5^3*g6^3*t^7.46)/(g1^5*g2*g3^5*g4) + (g5^3*g6^3*t^7.46)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.46)/(g1*g2^5*g3^5*g4*g5) + (g6^7*t^7.46)/(g1^5*g2*g3^5*g4*g5) + (g6^7*t^7.46)/(g1^5*g2^5*g3*g4*g5) - g1^4*g2^4*g3^4*g4^4*t^7.56 - g1^4*g2^4*g3^4*g5^4*t^7.56 - g1^4*g2^4*g3^4*g6^4*t^7.56 + (g1^3*g4^3*t^7.59)/(g2^5*g3^5*g5*g6) + (g4^3*t^7.59)/(g1*g2*g3^5*g5*g6) + (g2^3*g4^3*t^7.59)/(g1^5*g3^5*g5*g6) + (g4^3*t^7.59)/(g1*g2^5*g3*g5*g6) + (g4^3*t^7.59)/(g1^5*g2*g3*g5*g6) + (g3^3*g4^3*t^7.59)/(g1^5*g2^5*g5*g6) + (g1^3*g5^3*t^7.59)/(g2^5*g3^5*g4*g6) + (g5^3*t^7.59)/(g1*g2*g3^5*g4*g6) + (g2^3*g5^3*t^7.59)/(g1^5*g3^5*g4*g6) + (g5^3*t^7.59)/(g1*g2^5*g3*g4*g6) + (g5^3*t^7.59)/(g1^5*g2*g3*g4*g6) + (g3^3*g5^3*t^7.59)/(g1^5*g2^5*g4*g6) + (g1^3*g6^3*t^7.59)/(g2^5*g3^5*g4*g5) + (g6^3*t^7.59)/(g1*g2*g3^5*g4*g5) + (g2^3*g6^3*t^7.59)/(g1^5*g3^5*g4*g5) + (g6^3*t^7.59)/(g1*g2^5*g3*g4*g5) + (g6^3*t^7.59)/(g1^5*g2*g3*g4*g5) + (g3^3*g6^3*t^7.59)/(g1^5*g2^5*g4*g5) - (g4^3*t^7.71)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.71)/(g1*g2*g3*g4*g6^5) - (g4^3*t^7.71)/(g1*g2*g3*g5^5*g6) + (g1^7*t^7.71)/(g2^5*g3^5*g4*g5*g6) + (g1^3*t^7.71)/(g2*g3^5*g4*g5*g6) + (g2^3*t^7.71)/(g1*g3^5*g4*g5*g6) + (g2^7*t^7.71)/(g1^5*g3^5*g4*g5*g6) + (g1^3*t^7.71)/(g2^5*g3*g4*g5*g6) - (2*t^7.71)/(g1*g2*g3*g4*g5*g6) + (g2^3*t^7.71)/(g1^5*g3*g4*g5*g6) + (g3^3*t^7.71)/(g1*g2^5*g4*g5*g6) + (g3^3*t^7.71)/(g1^5*g2*g4*g5*g6) + (g3^7*t^7.71)/(g1^5*g2^5*g4*g5*g6) - (g5^3*t^7.71)/(g1*g2*g3*g4^5*g6) - (g6^3*t^7.71)/(g1*g2*g3*g4*g5^5) - (g6^3*t^7.71)/(g1*g2*g3*g4^5*g5) + g1^6*g2^6*g3^6*g4^6*g5^6*g6^6*t^7.73 - (g1^3*t^7.84)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.84)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.84)/(g1*g2*g4*g5*g6^5) - (g1^3*t^7.84)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.84)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.84)/(g1*g2*g4*g5^5*g6) - (g1^3*t^7.84)/(g2*g3*g4^5*g5*g6) - (g2^3*t^7.84)/(g1*g3*g4^5*g5*g6) - (g3^3*t^7.84)/(g1*g2*g4^5*g5*g6) + (g4^4*g5^4*t^7.9)/(g1^8*g2^8) + (g4^4*g5^4*t^7.9)/(g1^8*g3^8) + (g4^4*g5^4*t^7.9)/(g2^8*g3^8) + (g4^4*g5^4*t^7.9)/(g1^4*g2^4*g3^8) + (g4^4*g5^4*t^7.9)/(g1^4*g2^8*g3^4) + (g4^4*g5^4*t^7.9)/(g1^8*g2^4*g3^4) + (g4^4*g6^4*t^7.9)/(g1^8*g2^8) + (g4^4*g6^4*t^7.9)/(g1^8*g3^8) + (g4^4*g6^4*t^7.9)/(g2^8*g3^8) + (g4^4*g6^4*t^7.9)/(g1^4*g2^4*g3^8) + (g4^4*g6^4*t^7.9)/(g1^4*g2^8*g3^4) + (g4^4*g6^4*t^7.9)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.9)/(g1^8*g2^8) + (g5^4*g6^4*t^7.9)/(g1^8*g3^8) + (g5^4*g6^4*t^7.9)/(g2^8*g3^8) + (g5^4*g6^4*t^7.9)/(g1^4*g2^4*g3^8) + (g5^4*g6^4*t^7.9)/(g1^4*g2^8*g3^4) + (g5^4*g6^4*t^7.9)/(g1^8*g2^4*g3^4) + (g4^4*t^8.03)/(g1^4*g2^8) + (g4^4*t^8.03)/(g1^8*g2^4) + (g4^4*t^8.03)/(g1^4*g3^8) + (g1^4*g4^4*t^8.03)/(g2^8*g3^8) + (g4^4*t^8.03)/(g2^4*g3^8) + (g2^4*g4^4*t^8.03)/(g1^8*g3^8) + (g4^4*t^8.03)/(g1^8*g3^4) + (g4^4*t^8.03)/(g2^8*g3^4) + (g3^4*g4^4*t^8.03)/(g1^8*g2^8) + (g5^4*t^8.03)/(g1^4*g2^8) + (g5^4*t^8.03)/(g1^8*g2^4) + (g5^4*t^8.03)/(g1^4*g3^8) + (g1^4*g5^4*t^8.03)/(g2^8*g3^8) + (g5^4*t^8.03)/(g2^4*g3^8) + (g2^4*g5^4*t^8.03)/(g1^8*g3^8) + (g5^4*t^8.03)/(g1^8*g3^4) + (g5^4*t^8.03)/(g2^8*g3^4) + (g3^4*g5^4*t^8.03)/(g1^8*g2^8) + (g6^4*t^8.03)/(g1^4*g2^8) + (g6^4*t^8.03)/(g1^8*g2^4) + (g6^4*t^8.03)/(g1^4*g3^8) + (g1^4*g6^4*t^8.03)/(g2^8*g3^8) + (g6^4*t^8.03)/(g2^4*g3^8) + (g2^4*g6^4*t^8.03)/(g1^8*g3^8) + (g6^4*t^8.03)/(g1^8*g3^4) + (g6^4*t^8.03)/(g2^8*g3^4) + (g3^4*g6^4*t^8.03)/(g1^8*g2^8) - t^8.16/g1^8 - t^8.16/g2^8 - (7*t^8.16)/(g1^4*g2^4) - t^8.16/g3^8 - (g1^4*t^8.16)/(g2^4*g3^8) - (g2^4*t^8.16)/(g1^4*g3^8) - (7*t^8.16)/(g1^4*g3^4) - (g1^4*t^8.16)/(g2^8*g3^4) - (7*t^8.16)/(g2^4*g3^4) - (g2^4*t^8.16)/(g1^8*g3^4) - (g3^4*t^8.16)/(g1^4*g2^8) - (g3^4*t^8.16)/(g1^8*g2^4) - (g4^4*t^8.16)/(g1^4*g2^4*g5^4) - (g4^4*t^8.16)/(g1^4*g3^4*g5^4) - (g4^4*t^8.16)/(g2^4*g3^4*g5^4) - (g5^4*t^8.16)/(g1^4*g2^4*g4^4) - (g5^4*t^8.16)/(g1^4*g3^4*g4^4) - (g5^4*t^8.16)/(g2^4*g3^4*g4^4) - (g4^4*t^8.16)/(g1^4*g2^4*g6^4) - (g4^4*t^8.16)/(g1^4*g3^4*g6^4) - (g4^4*t^8.16)/(g2^4*g3^4*g6^4) - (g5^4*t^8.16)/(g1^4*g2^4*g6^4) - (g5^4*t^8.16)/(g1^4*g3^4*g6^4) - (g5^4*t^8.16)/(g2^4*g3^4*g6^4) - (g6^4*t^8.16)/(g1^4*g2^4*g4^4) - (g6^4*t^8.16)/(g1^4*g3^4*g4^4) - (g6^4*t^8.16)/(g2^4*g3^4*g4^4) - (g6^4*t^8.16)/(g1^4*g2^4*g5^4) - (g6^4*t^8.16)/(g1^4*g3^4*g5^4) - (g6^4*t^8.16)/(g2^4*g3^4*g5^4) - t^8.28/(g1^4*g4^4) - t^8.28/(g2^4*g4^4) - t^8.28/(g3^4*g4^4) - (g1^4*t^8.28)/(g2^4*g3^4*g4^4) - (g2^4*t^8.28)/(g1^4*g3^4*g4^4) - (g3^4*t^8.28)/(g1^4*g2^4*g4^4) - t^8.28/(g1^4*g5^4) - t^8.28/(g2^4*g5^4) - t^8.28/(g3^4*g5^4) - (g1^4*t^8.28)/(g2^4*g3^4*g5^4) - (g2^4*t^8.28)/(g1^4*g3^4*g5^4) - (g3^4*t^8.28)/(g1^4*g2^4*g5^4) - t^8.28/(g1^4*g6^4) - t^8.28/(g2^4*g6^4) - t^8.28/(g3^4*g6^4) - (g1^4*t^8.28)/(g2^4*g3^4*g6^4) - (g2^4*t^8.28)/(g1^4*g3^4*g6^4) - (g3^4*t^8.28)/(g1^4*g2^4*g6^4) + (g1^2*g4^6*g5^6*g6^2*t^8.32)/(g2^2*g3^2) + (g2^2*g4^6*g5^6*g6^2*t^8.32)/(g1^2*g3^2) + (g3^2*g4^6*g5^6*g6^2*t^8.32)/(g1^2*g2^2) + (g1^2*g4^6*g5^2*g6^6*t^8.32)/(g2^2*g3^2) + (g2^2*g4^6*g5^2*g6^6*t^8.32)/(g1^2*g3^2) + (g3^2*g4^6*g5^2*g6^6*t^8.32)/(g1^2*g2^2) + (g1^2*g4^2*g5^6*g6^6*t^8.32)/(g2^2*g3^2) + (g2^2*g4^2*g5^6*g6^6*t^8.32)/(g1^2*g3^2) + (g3^2*g4^2*g5^6*g6^6*t^8.32)/(g1^2*g2^2) + t^8.41/g4^8 + t^8.41/g5^8 + t^8.41/(g4^4*g5^4) + t^8.41/g6^8 + t^8.41/(g4^4*g6^4) + t^8.41/(g5^4*g6^4) + (g1^6*g4^6*g5^2*g6^2*t^8.45)/(g2^2*g3^2) + (g1^2*g2^2*g4^6*g5^2*g6^2*t^8.45)/g3^2 + (g2^6*g4^6*g5^2*g6^2*t^8.45)/(g1^2*g3^2) + (g1^2*g3^2*g4^6*g5^2*g6^2*t^8.45)/g2^2 + (g2^2*g3^2*g4^6*g5^2*g6^2*t^8.45)/g1^2 + (g3^6*g4^6*g5^2*g6^2*t^8.45)/(g1^2*g2^2) + (g1^6*g4^2*g5^6*g6^2*t^8.45)/(g2^2*g3^2) + (g1^2*g2^2*g4^2*g5^6*g6^2*t^8.45)/g3^2 + (g2^6*g4^2*g5^6*g6^2*t^8.45)/(g1^2*g3^2) + (g1^2*g3^2*g4^2*g5^6*g6^2*t^8.45)/g2^2 + (g2^2*g3^2*g4^2*g5^6*g6^2*t^8.45)/g1^2 + (g3^6*g4^2*g5^6*g6^2*t^8.45)/(g1^2*g2^2) + (g1^6*g4^2*g5^2*g6^6*t^8.45)/(g2^2*g3^2) + (g1^2*g2^2*g4^2*g5^2*g6^6*t^8.45)/g3^2 + (g2^6*g4^2*g5^2*g6^6*t^8.45)/(g1^2*g3^2) + (g1^2*g3^2*g4^2*g5^2*g6^6*t^8.45)/g2^2 + (g2^2*g3^2*g4^2*g5^2*g6^6*t^8.45)/g1^2 + (g3^6*g4^2*g5^2*g6^6*t^8.45)/(g1^2*g2^2) - (g1^2*g2^2*g3^2*g4^6*g5^2*t^8.58)/g6^2 - (g1^2*g2^2*g3^2*g4^2*g5^6*t^8.58)/g6^2 - (g1^2*g2^2*g3^2*g4^6*g6^2*t^8.58)/g5^2 - (g1^6*g2^2*g4^2*g5^2*g6^2*t^8.58)/g3^2 - (g1^2*g2^6*g4^2*g5^2*g6^2*t^8.58)/g3^2 - (g1^6*g3^2*g4^2*g5^2*g6^2*t^8.58)/g2^2 - 6*g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^8.58 - (g2^6*g3^2*g4^2*g5^2*g6^2*t^8.58)/g1^2 - (g1^2*g3^6*g4^2*g5^2*g6^2*t^8.58)/g2^2 - (g2^2*g3^6*g4^2*g5^2*g6^2*t^8.58)/g1^2 - (g1^2*g2^2*g3^2*g5^6*g6^2*t^8.58)/g4^2 - (g1^2*g2^2*g3^2*g4^2*g6^6*t^8.58)/g5^2 - (g1^2*g2^2*g3^2*g5^2*g6^6*t^8.58)/g4^2 + t^8.63/(g1^16*g2^16) + t^8.63/(g1^16*g3^16) + t^8.63/(g2^16*g3^16) + t^8.63/(g1^4*g2^12*g3^16) + t^8.63/(g1^8*g2^8*g3^16) + t^8.63/(g1^12*g2^4*g3^16) + t^8.63/(g1^4*g2^16*g3^12) + t^8.63/(g1^8*g2^12*g3^12) + t^8.63/(g1^12*g2^8*g3^12) + t^8.63/(g1^16*g2^4*g3^12) + t^8.63/(g1^8*g2^16*g3^8) + t^8.63/(g1^12*g2^12*g3^8) + t^8.63/(g1^16*g2^8*g3^8) + t^8.63/(g1^12*g2^16*g3^4) + t^8.63/(g1^16*g2^12*g3^4) - (g1^6*g2^2*g3^2*g4^2*g5^2*t^8.7)/g6^2 - (g1^2*g2^6*g3^2*g4^2*g5^2*t^8.7)/g6^2 - (g1^2*g2^2*g3^6*g4^2*g5^2*t^8.7)/g6^2 - (g1^6*g2^2*g3^2*g4^2*g6^2*t^8.7)/g5^2 - (g1^2*g2^6*g3^2*g4^2*g6^2*t^8.7)/g5^2 - (g1^2*g2^2*g3^6*g4^2*g6^2*t^8.7)/g5^2 - (g1^6*g2^2*g3^2*g5^2*g6^2*t^8.7)/g4^2 - (g1^2*g2^6*g3^2*g5^2*g6^2*t^8.7)/g4^2 - (g1^2*g2^2*g3^6*g5^2*g6^2*t^8.7)/g4^2 + g1^4*g2^4*g3^4*g4^8*g5^8*g6^4*t^8.74 + g1^4*g2^4*g3^4*g4^8*g5^4*g6^8*t^8.74 + g1^4*g2^4*g3^4*g4^4*g5^8*g6^8*t^8.74 + g1^8*g2^4*g3^4*g4^8*g5^4*g6^4*t^8.87 + g1^4*g2^8*g3^4*g4^8*g5^4*g6^4*t^8.87 + g1^4*g2^4*g3^8*g4^8*g5^4*g6^4*t^8.87 + g1^8*g2^4*g3^4*g4^4*g5^8*g6^4*t^8.87 + g1^4*g2^8*g3^4*g4^4*g5^8*g6^4*t^8.87 + g1^4*g2^4*g3^8*g4^4*g5^8*g6^4*t^8.87 + g1^8*g2^4*g3^4*g4^4*g5^4*g6^8*t^8.87 + g1^4*g2^8*g3^4*g4^4*g5^4*g6^8*t^8.87 + g1^4*g2^4*g3^8*g4^4*g5^4*g6^8*t^8.87 + (g4^11*g5^3*t^8.89)/(g1*g2*g3*g6) + (g4^7*g5^7*t^8.89)/(g1*g2*g3*g6) + (g4^3*g5^11*t^8.89)/(g1*g2*g3*g6) + (g4^11*g6^3*t^8.89)/(g1*g2*g3*g5) + (2*g4^7*g5^3*g6^3*t^8.89)/(g1*g2*g3) + (2*g4^3*g5^7*g6^3*t^8.89)/(g1*g2*g3) + (g5^11*g6^3*t^8.89)/(g1*g2*g3*g4) + (g4^7*g6^7*t^8.89)/(g1*g2*g3*g5) + (2*g4^3*g5^3*g6^7*t^8.89)/(g1*g2*g3) + (g5^7*g6^7*t^8.89)/(g1*g2*g3*g4) + (g4^3*g6^11*t^8.89)/(g1*g2*g3*g5) + (g5^3*g6^11*t^8.89)/(g1*g2*g3*g4) - t^4.71/(g1*g2*g3*g4*g5*g6*y) - t^6.87/(g1*g2^5*g3^5*g4*g5*g6*y) - t^6.87/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.87/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.31/(g1^4*g2^4*g3^8*y) + t^7.31/(g1^4*g2^8*g3^4*y) + t^7.31/(g1^8*g2^4*g3^4*y) + (g1^2*g4^2*g5^2*g6^2*t^7.73)/(g2^2*g3^2*y) + (g2^2*g4^2*g5^2*g6^2*t^7.73)/(g1^2*g3^2*y) + (g3^2*g4^2*g5^2*g6^2*t^7.73)/(g1^2*g2^2*y) + (g1^3*g2^3*t^8.56)/(g3*g4*g5*g6*y) + (g1^3*g3^3*t^8.56)/(g2*g4*g5*g6*y) + (g2^3*g3^3*t^8.56)/(g1*g4*g5*g6*y) + (g4^4*g5^4*t^8.75)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.75)/(g1^4*g3^4*y) + (g4^4*g5^4*t^8.75)/(g2^4*g3^4*y) + (g4^4*g6^4*t^8.75)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.75)/(g1^4*g3^4*y) + (g4^4*g6^4*t^8.75)/(g2^4*g3^4*y) + (g5^4*g6^4*t^8.75)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.75)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.75)/(g2^4*g3^4*y) + (2*g4^4*t^8.87)/(g1^4*y) + (2*g4^4*t^8.87)/(g2^4*y) + (2*g4^4*t^8.87)/(g3^4*y) + (g1^4*g4^4*t^8.87)/(g2^4*g3^4*y) + (g2^4*g4^4*t^8.87)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.87)/(g1^4*g2^4*y) + (2*g5^4*t^8.87)/(g1^4*y) + (2*g5^4*t^8.87)/(g2^4*y) + (2*g5^4*t^8.87)/(g3^4*y) + (g1^4*g5^4*t^8.87)/(g2^4*g3^4*y) + (g2^4*g5^4*t^8.87)/(g1^4*g3^4*y) + (g3^4*g5^4*t^8.87)/(g1^4*g2^4*y) + (2*g6^4*t^8.87)/(g1^4*y) + (2*g6^4*t^8.87)/(g2^4*y) + (2*g6^4*t^8.87)/(g3^4*y) + (g1^4*g6^4*t^8.87)/(g2^4*g3^4*y) + (g2^4*g6^4*t^8.87)/(g1^4*g3^4*y) + (g3^4*g6^4*t^8.87)/(g1^4*g2^4*y) - (t^4.71*y)/(g1*g2*g3*g4*g5*g6) - (t^6.87*y)/(g1*g2^5*g3^5*g4*g5*g6) - (t^6.87*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.87*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.31*y)/(g1^4*g2^4*g3^8) + (t^7.31*y)/(g1^4*g2^8*g3^4) + (t^7.31*y)/(g1^8*g2^4*g3^4) + (g1^2*g4^2*g5^2*g6^2*t^7.73*y)/(g2^2*g3^2) + (g2^2*g4^2*g5^2*g6^2*t^7.73*y)/(g1^2*g3^2) + (g3^2*g4^2*g5^2*g6^2*t^7.73*y)/(g1^2*g2^2) + (g1^3*g2^3*t^8.56*y)/(g3*g4*g5*g6) + (g1^3*g3^3*t^8.56*y)/(g2*g4*g5*g6) + (g2^3*g3^3*t^8.56*y)/(g1*g4*g5*g6) + (g4^4*g5^4*t^8.75*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.75*y)/(g1^4*g3^4) + (g4^4*g5^4*t^8.75*y)/(g2^4*g3^4) + (g4^4*g6^4*t^8.75*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.75*y)/(g1^4*g3^4) + (g4^4*g6^4*t^8.75*y)/(g2^4*g3^4) + (g5^4*g6^4*t^8.75*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.75*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.75*y)/(g2^4*g3^4) + (2*g4^4*t^8.87*y)/g1^4 + (2*g4^4*t^8.87*y)/g2^4 + (2*g4^4*t^8.87*y)/g3^4 + (g1^4*g4^4*t^8.87*y)/(g2^4*g3^4) + (g2^4*g4^4*t^8.87*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.87*y)/(g1^4*g2^4) + (2*g5^4*t^8.87*y)/g1^4 + (2*g5^4*t^8.87*y)/g2^4 + (2*g5^4*t^8.87*y)/g3^4 + (g1^4*g5^4*t^8.87*y)/(g2^4*g3^4) + (g2^4*g5^4*t^8.87*y)/(g1^4*g3^4) + (g3^4*g5^4*t^8.87*y)/(g1^4*g2^4) + (2*g6^4*t^8.87*y)/g1^4 + (2*g6^4*t^8.87*y)/g2^4 + (2*g6^4*t^8.87*y)/g3^4 + (g1^4*g6^4*t^8.87*y)/(g2^4*g3^4) + (g2^4*g6^4*t^8.87*y)/(g1^4*g3^4) + (g3^4*g6^4*t^8.87*y)/(g1^4*g2^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55594 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2q_3$ | 0.9189 | 1.1464 | 0.8015 | [X:[], M:[0.7021, 0.7021, 0.7021], q:[0.649, 0.649, 0.649], qb:[0.6185, 0.6185, 0.6185], phi:[0.5494]] | 3*t^2.11 + t^3.3 + 3*t^3.71 + 9*t^3.8 + 6*t^4.21 + 6*t^5.36 + 3*t^5.4 + 9*t^5.45 + 6*t^5.54 + 9*t^5.82 + 18*t^5.91 - 18*t^6. - t^4.65/y - t^4.65*y | detail |