Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55817 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ q_2q_3$ + $ M_1q_1q_3$ | 0.6821 | 0.8176 | 0.8343 | [X:[], M:[0.7788], q:[0.4159, 1.1947, 0.8053], qb:[0.6755, 0.6755, 0.6755], phi:[0.3894]] | [X:[], M:[[-4, -4, -4]], q:[[3, 3, 3], [-1, -1, -1], [1, 1, 1]], qb:[[5, 0, 0], [0, 5, 0], [0, 0, 5]], phi:[[-2, -2, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ M_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ \phi_1\tilde{q}_1^2$, $ M_1q_1\tilde{q}_1$, $ q_2\tilde{q}_1$ | . | -10 | 2*t^2.34 + 3*t^3.27 + 3*t^4.05 + 3*t^4.44 + 3*t^4.67 + 3*t^5.22 + 6*t^5.61 - 10*t^6. + 3*t^6.39 + 6*t^6.55 + 3*t^6.78 + 4*t^7.01 - 9*t^7.17 + 7*t^7.33 + 6*t^7.56 + 6*t^7.72 + 12*t^7.95 + 3*t^8.11 - 20*t^8.34 + 9*t^8.5 + 6*t^8.73 + 6*t^8.88 - t^4.17/y - (2*t^6.5)/y + t^7.67/y + (2*t^7.83)/y + (6*t^8.61)/y - (3*t^8.84)/y - t^4.17*y - 2*t^6.5*y + t^7.67*y + 2*t^7.83*y + 6*t^8.61*y - 3*t^8.84*y | (2*t^2.34)/(g1^4*g2^4*g3^4) + g1^8*g2^3*g3^3*t^3.27 + g1^3*g2^8*g3^3*t^3.27 + g1^3*g2^3*g3^8*t^3.27 + g1^5*g2^5*t^4.05 + g1^5*g3^5*t^4.05 + g2^5*g3^5*t^4.05 + g1^6*g2*g3*t^4.44 + g1*g2^6*g3*t^4.44 + g1*g2*g3^6*t^4.44 + (3*t^4.67)/(g1^8*g2^8*g3^8) + (g1^8*t^5.22)/(g2^2*g3^2) + (g2^8*t^5.22)/(g1^2*g3^2) + (g3^8*t^5.22)/(g1^2*g2^2) + (2*g1^4*t^5.61)/(g2*g3) + (2*g2^4*t^5.61)/(g1*g3) + (2*g3^4*t^5.61)/(g1*g2) - 4*t^6. - (g1^5*t^6.)/g2^5 - (g2^5*t^6.)/g1^5 - (g1^5*t^6.)/g3^5 - (g2^5*t^6.)/g3^5 - (g3^5*t^6.)/g1^5 - (g3^5*t^6.)/g2^5 + (g1*g2*t^6.39)/g3^4 + (g1*g3*t^6.39)/g2^4 + (g2*g3*t^6.39)/g1^4 + g1^16*g2^6*g3^6*t^6.55 + g1^11*g2^11*g3^6*t^6.55 + g1^6*g2^16*g3^6*t^6.55 + g1^11*g2^6*g3^11*t^6.55 + g1^6*g2^11*g3^11*t^6.55 + g1^6*g2^6*g3^16*t^6.55 + (g1^2*t^6.78)/(g2^3*g3^3) + (g2^2*t^6.78)/(g1^3*g3^3) + (g3^2*t^6.78)/(g1^3*g2^3) + (4*t^7.01)/(g1^12*g2^12*g3^12) - (g1^3*t^7.17)/(g2^2*g3^7) - (g2^3*t^7.17)/(g1^2*g3^7) - (g1^3*t^7.17)/(g2^7*g3^2) - (3*t^7.17)/(g1^2*g2^2*g3^2) - (g2^3*t^7.17)/(g1^7*g3^2) - (g3^3*t^7.17)/(g1^2*g2^7) - (g3^3*t^7.17)/(g1^7*g2^2) + g1^13*g2^8*g3^3*t^7.33 + g1^8*g2^13*g3^3*t^7.33 + g1^13*g2^3*g3^8*t^7.33 + g1^8*g2^8*g3^8*t^7.33 + g1^3*g2^13*g3^8*t^7.33 + g1^8*g2^3*g3^13*t^7.33 + g1^3*g2^8*g3^13*t^7.33 + (2*g1^4*t^7.56)/(g2^6*g3^6) + (2*g2^4*t^7.56)/(g1^6*g3^6) + (2*g3^4*t^7.56)/(g1^6*g2^6) + g1^14*g2^4*g3^4*t^7.72 + g1^9*g2^9*g3^4*t^7.72 + g1^4*g2^14*g3^4*t^7.72 + g1^9*g2^4*g3^9*t^7.72 + g1^4*g2^9*g3^9*t^7.72 + g1^4*g2^4*g3^14*t^7.72 + t^7.95/g1^10 + t^7.95/g2^10 + (3*t^7.95)/(g1^5*g2^5) + t^7.95/g3^10 + (3*t^7.95)/(g1^5*g3^5) + (3*t^7.95)/(g2^5*g3^5) + g1^10*g2^10*t^8.11 + g1^10*g3^10*t^8.11 + g2^10*g3^10*t^8.11 - (2*g1*t^8.34)/(g2^4*g3^9) - (2*g2*t^8.34)/(g1^4*g3^9) - (2*g1*t^8.34)/(g2^9*g3^4) - (8*t^8.34)/(g1^4*g2^4*g3^4) - (2*g2*t^8.34)/(g1^9*g3^4) - (2*g3*t^8.34)/(g1^4*g2^9) - (2*g3*t^8.34)/(g1^9*g2^4) + g1^16*g2*g3*t^8.5 + g1^11*g2^6*g3*t^8.5 + g1^6*g2^11*g3*t^8.5 + g1*g2^16*g3*t^8.5 + g1^11*g2*g3^6*t^8.5 + g1*g2^11*g3^6*t^8.5 + g1^6*g2*g3^11*t^8.5 + g1*g2^6*g3^11*t^8.5 + g1*g2*g3^16*t^8.5 + (2*t^8.73)/(g1^3*g2^3*g3^8) + (2*t^8.73)/(g1^3*g2^8*g3^3) + (2*t^8.73)/(g1^8*g2^3*g3^3) + g1^12*g2^2*g3^2*t^8.88 + g1^7*g2^7*g3^2*t^8.88 + g1^2*g2^12*g3^2*t^8.88 + g1^7*g2^2*g3^7*t^8.88 + g1^2*g2^7*g3^7*t^8.88 + g1^2*g2^2*g3^12*t^8.88 - t^4.17/(g1^2*g2^2*g3^2*y) - (2*t^6.5)/(g1^6*g2^6*g3^6*y) + t^7.67/(g1^8*g2^8*g3^8*y) + (2*g1^2*g2^2*g3^2*t^7.83)/y + (2*g1^4*t^8.61)/(g2*g3*y) + (2*g2^4*t^8.61)/(g1*g3*y) + (2*g3^4*t^8.61)/(g1*g2*y) - (3*t^8.84)/(g1^10*g2^10*g3^10*y) - (t^4.17*y)/(g1^2*g2^2*g3^2) - (2*t^6.5*y)/(g1^6*g2^6*g3^6) + (t^7.67*y)/(g1^8*g2^8*g3^8) + 2*g1^2*g2^2*g3^2*t^7.83*y + (2*g1^4*t^8.61*y)/(g2*g3) + (2*g2^4*t^8.61*y)/(g1*g3) + (2*g3^4*t^8.61*y)/(g1*g2) - (3*t^8.84*y)/(g1^10*g2^10*g3^10) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55656 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ q_2q_3$ | 0.665 | 0.79 | 0.8418 | [X:[], M:[], q:[0.4, 1.2, 0.8], qb:[0.6667, 0.6667, 0.6667], phi:[0.4]] | t^2.4 + 3*t^3.2 + t^3.6 + 3*t^4. + 3*t^4.4 + t^4.8 + 3*t^5.2 + 3*t^5.6 - 9*t^6. - t^4.2/y - t^4.2*y | detail | {a: 133/200, c: 79/100, q1: 2/5, q2: 6/5, q3: 4/5, qb1: 2/3, qb2: 2/3, qb3: 2/3, phi1: 2/5} |