Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55813 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_3q_3\tilde{q}_3$ | 0.9084 | 1.1258 | 0.8069 | [X:[], M:[0.7677, 0.8599, 0.7447], q:[0.6161, 0.6161, 0.6276], qb:[0.6161, 0.6161, 0.6276], phi:[0.57]] | [X:[], M:[[0, 0, -2, -2, 0], [0, 2, 2, 2, 2], [0, -4, 0, 0, -4]], q:[[-1, 0, 2, 2, 0], [1, 0, 0, 0, 0], [0, 4, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 4]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_2$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ M_2M_3$, $ M_1M_2$, $ M_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_3$, $ M_3q_2\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$ | . | -15 | t^2.23 + t^2.3 + t^2.58 + 5*t^3.7 + 8*t^3.73 + t^4.47 + t^4.54 + t^4.61 + t^4.81 + t^4.88 + t^5.16 + 10*t^5.41 + 8*t^5.44 + 3*t^5.48 + 5*t^5.93 - 15*t^6. + 5*t^6.28 + 8*t^6.31 + t^6.7 + t^6.77 + t^6.84 + t^6.91 + t^7.05 + t^7.12 + t^7.19 + 15*t^7.39 + 32*t^7.43 + 31*t^7.46 + 10*t^7.64 - 6*t^7.71 + t^7.74 + 3*t^7.78 + 5*t^8.17 - 12*t^8.23 - 5*t^8.3 + 5*t^8.51 - 15*t^8.58 + 5*t^8.86 + 8*t^8.89 + t^8.94 - t^4.71/y - t^6.94/y - t^7.01/y + t^7.54/y + t^7.81/y + t^7.88/y + t^8.41/y + t^8.48/y + (5*t^8.93)/y + (8*t^8.97)/y - t^4.71*y - t^6.94*y - t^7.01*y + t^7.54*y + t^7.81*y + t^7.88*y + t^8.41*y + t^8.48*y + 5*t^8.93*y + 8*t^8.97*y | t^2.23/(g2^4*g5^4) + t^2.3/(g3^2*g4^2) + g2^2*g3^2*g4^2*g5^2*t^2.58 + g1*g3^2*t^3.7 + g1*g4^2*t^3.7 + g3^2*g4^2*t^3.7 + (g3^4*g4^2*t^3.7)/g1 + (g3^2*g4^4*t^3.7)/g1 + g1*g2^4*t^3.73 + g2^4*g3^2*t^3.73 + g2^4*g4^2*t^3.73 + (g2^4*g3^2*g4^2*t^3.73)/g1 + g1*g5^4*t^3.73 + g3^2*g5^4*t^3.73 + g4^2*g5^4*t^3.73 + (g3^2*g4^2*g5^4*t^3.73)/g1 + t^4.47/(g2^8*g5^8) + t^4.54/(g2^4*g3^2*g4^2*g5^4) + t^4.61/(g3^4*g4^4) + (g3^2*g4^2*t^4.81)/(g2^2*g5^2) + g2^2*g5^2*t^4.88 + g2^4*g3^4*g4^4*g5^4*t^5.16 + (g1^2*t^5.41)/(g2*g3*g4*g5) + (g1*g3*t^5.41)/(g2*g4*g5) + (g3^3*t^5.41)/(g2*g4*g5) + (g1*g4*t^5.41)/(g2*g3*g5) + (2*g3*g4*t^5.41)/(g2*g5) + (g3^3*g4*t^5.41)/(g1*g2*g5) + (g4^3*t^5.41)/(g2*g3*g5) + (g3*g4^3*t^5.41)/(g1*g2*g5) + (g3^3*g4^3*t^5.41)/(g1^2*g2*g5) + (g1*g2^3*t^5.44)/(g3*g4*g5) + (g2^3*g3*t^5.44)/(g4*g5) + (g2^3*g4*t^5.44)/(g3*g5) + (g2^3*g3*g4*t^5.44)/(g1*g5) + (g1*g5^3*t^5.44)/(g2*g3*g4) + (g3*g5^3*t^5.44)/(g2*g4) + (g4*g5^3*t^5.44)/(g2*g3) + (g3*g4*g5^3*t^5.44)/(g1*g2) + (g2^7*t^5.48)/(g3*g4*g5) + (g2^3*g5^3*t^5.48)/(g3*g4) + (g5^7*t^5.48)/(g2*g3*g4) + (g1*g3^2*t^5.93)/(g2^4*g5^4) + (g1*g4^2*t^5.93)/(g2^4*g5^4) + (g3^2*g4^2*t^5.93)/(g2^4*g5^4) + (g3^4*g4^2*t^5.93)/(g1*g2^4*g5^4) + (g3^2*g4^4*t^5.93)/(g1*g2^4*g5^4) - 5*t^6. - (g1*t^6.)/g3^2 - (g3^2*t^6.)/g1 - (g1*t^6.)/g4^2 - (g1^2*t^6.)/(g3^2*g4^2) - (g3^2*t^6.)/g4^2 - (g4^2*t^6.)/g1 - (g4^2*t^6.)/g3^2 - (g3^2*g4^2*t^6.)/g1^2 - (g2^4*t^6.)/g5^4 - (g5^4*t^6.)/g2^4 + g1*g2^2*g3^4*g4^2*g5^2*t^6.28 + g1*g2^2*g3^2*g4^4*g5^2*t^6.28 + g2^2*g3^4*g4^4*g5^2*t^6.28 + (g2^2*g3^6*g4^4*g5^2*t^6.28)/g1 + (g2^2*g3^4*g4^6*g5^2*t^6.28)/g1 + g1*g2^6*g3^2*g4^2*g5^2*t^6.31 + g2^6*g3^4*g4^2*g5^2*t^6.31 + g2^6*g3^2*g4^4*g5^2*t^6.31 + (g2^6*g3^4*g4^4*g5^2*t^6.31)/g1 + g1*g2^2*g3^2*g4^2*g5^6*t^6.31 + g2^2*g3^4*g4^2*g5^6*t^6.31 + g2^2*g3^2*g4^4*g5^6*t^6.31 + (g2^2*g3^4*g4^4*g5^6*t^6.31)/g1 + t^6.7/(g2^12*g5^12) + t^6.77/(g2^8*g3^2*g4^2*g5^8) + t^6.84/(g2^4*g3^4*g4^4*g5^4) + t^6.91/(g3^6*g4^6) + (g3^2*g4^2*t^7.05)/(g2^6*g5^6) + t^7.12/(g2^2*g5^2) + (g2^2*g5^2*t^7.19)/(g3^2*g4^2) + g1^2*g3^4*t^7.39 + g1^2*g3^2*g4^2*t^7.39 + g1*g3^4*g4^2*t^7.39 + g3^6*g4^2*t^7.39 + g1^2*g4^4*t^7.39 + g1*g3^2*g4^4*t^7.39 + 3*g3^4*g4^4*t^7.39 + (g3^6*g4^4*t^7.39)/g1 + (g3^8*g4^4*t^7.39)/g1^2 + g3^2*g4^6*t^7.39 + (g3^4*g4^6*t^7.39)/g1 + (g3^6*g4^6*t^7.39)/g1^2 + (g3^4*g4^8*t^7.39)/g1^2 + g1^2*g2^4*g3^2*t^7.43 + g1*g2^4*g3^4*t^7.43 + g1^2*g2^4*g4^2*t^7.43 + 2*g1*g2^4*g3^2*g4^2*t^7.43 + 2*g2^4*g3^4*g4^2*t^7.43 + (g2^4*g3^6*g4^2*t^7.43)/g1 + g1*g2^4*g4^4*t^7.43 + 2*g2^4*g3^2*g4^4*t^7.43 + (2*g2^4*g3^4*g4^4*t^7.43)/g1 + (g2^4*g3^6*g4^4*t^7.43)/g1^2 + (g2^4*g3^2*g4^6*t^7.43)/g1 + (g2^4*g3^4*g4^6*t^7.43)/g1^2 + g1^2*g3^2*g5^4*t^7.43 + g1*g3^4*g5^4*t^7.43 + g1^2*g4^2*g5^4*t^7.43 + 2*g1*g3^2*g4^2*g5^4*t^7.43 + 2*g3^4*g4^2*g5^4*t^7.43 + (g3^6*g4^2*g5^4*t^7.43)/g1 + g1*g4^4*g5^4*t^7.43 + 2*g3^2*g4^4*g5^4*t^7.43 + (2*g3^4*g4^4*g5^4*t^7.43)/g1 + (g3^6*g4^4*g5^4*t^7.43)/g1^2 + (g3^2*g4^6*g5^4*t^7.43)/g1 + (g3^4*g4^6*g5^4*t^7.43)/g1^2 + g1^2*g2^8*t^7.46 + g1*g2^8*g3^2*t^7.46 + g2^8*g3^4*t^7.46 + g1*g2^8*g4^2*t^7.46 + 2*g2^8*g3^2*g4^2*t^7.46 + (g2^8*g3^4*g4^2*t^7.46)/g1 + g2^8*g4^4*t^7.46 + (g2^8*g3^2*g4^4*t^7.46)/g1 + (g2^8*g3^4*g4^4*t^7.46)/g1^2 + g1^2*g2^4*g5^4*t^7.46 + g1*g2^4*g3^2*g5^4*t^7.46 + g2^4*g3^4*g5^4*t^7.46 + g1*g2^4*g4^2*g5^4*t^7.46 + 3*g2^4*g3^2*g4^2*g5^4*t^7.46 + (g2^4*g3^4*g4^2*g5^4*t^7.46)/g1 + g2^4*g4^4*g5^4*t^7.46 + (g2^4*g3^2*g4^4*g5^4*t^7.46)/g1 + (g2^4*g3^4*g4^4*g5^4*t^7.46)/g1^2 + g1^2*g5^8*t^7.46 + g1*g3^2*g5^8*t^7.46 + g3^4*g5^8*t^7.46 + g1*g4^2*g5^8*t^7.46 + 2*g3^2*g4^2*g5^8*t^7.46 + (g3^4*g4^2*g5^8*t^7.46)/g1 + g4^4*g5^8*t^7.46 + (g3^2*g4^4*g5^8*t^7.46)/g1 + (g3^4*g4^4*g5^8*t^7.46)/g1^2 + (g1^2*t^7.64)/(g2^5*g3*g4*g5^5) + (g1*g3*t^7.64)/(g2^5*g4*g5^5) + (g3^3*t^7.64)/(g2^5*g4*g5^5) + (g1*g4*t^7.64)/(g2^5*g3*g5^5) + (2*g3*g4*t^7.64)/(g2^5*g5^5) + (g3^3*g4*t^7.64)/(g1*g2^5*g5^5) + (g4^3*t^7.64)/(g2^5*g3*g5^5) + (g3*g4^3*t^7.64)/(g1*g2^5*g5^5) + (g3^3*g4^3*t^7.64)/(g1^2*g2^5*g5^5) - (g1*t^7.71)/(g2*g3*g4^3*g5) - (g1*t^7.71)/(g2*g3^3*g4*g5) - (2*t^7.71)/(g2*g3*g4*g5) - (g3*t^7.71)/(g1*g2*g4*g5) - (g4*t^7.71)/(g1*g2*g3*g5) + g2^6*g3^6*g4^6*g5^6*t^7.74 + (g2^7*t^7.78)/(g3^3*g4^3*g5) + (g2^3*g5^3*t^7.78)/(g3^3*g4^3) + (g5^7*t^7.78)/(g2*g3^3*g4^3) + (g1*g3^2*t^8.17)/(g2^8*g5^8) + (g1*g4^2*t^8.17)/(g2^8*g5^8) + (g3^2*g4^2*t^8.17)/(g2^8*g5^8) + (g3^4*g4^2*t^8.17)/(g1*g2^8*g5^8) + (g3^2*g4^4*t^8.17)/(g1*g2^8*g5^8) - (4*t^8.23)/(g2^4*g5^4) - (g1*t^8.23)/(g2^4*g3^2*g5^4) - (g3^2*t^8.23)/(g1*g2^4*g5^4) - (g1*t^8.23)/(g2^4*g4^2*g5^4) - (g1^2*t^8.23)/(g2^4*g3^2*g4^2*g5^4) - (g3^2*t^8.23)/(g2^4*g4^2*g5^4) - (g4^2*t^8.23)/(g1*g2^4*g5^4) - (g4^2*t^8.23)/(g2^4*g3^2*g5^4) - (g3^2*g4^2*t^8.23)/(g1^2*g2^4*g5^4) - (3*t^8.3)/(g3^2*g4^2) - (g2^4*t^8.3)/(g3^2*g4^2*g5^4) - (g5^4*t^8.3)/(g2^4*g3^2*g4^2) + (g1*g3^4*g4^2*t^8.51)/(g2^2*g5^2) + (g1*g3^2*g4^4*t^8.51)/(g2^2*g5^2) + (g3^4*g4^4*t^8.51)/(g2^2*g5^2) + (g3^6*g4^4*t^8.51)/(g1*g2^2*g5^2) + (g3^4*g4^6*t^8.51)/(g1*g2^2*g5^2) - (g2^6*g3^2*g4^2*t^8.58)/g5^2 - g1^2*g2^2*g5^2*t^8.58 - g1*g2^2*g3^2*g5^2*t^8.58 - g2^2*g3^4*g5^2*t^8.58 - g1*g2^2*g4^2*g5^2*t^8.58 - 5*g2^2*g3^2*g4^2*g5^2*t^8.58 - (g2^2*g3^4*g4^2*g5^2*t^8.58)/g1 - g2^2*g4^4*g5^2*t^8.58 - (g2^2*g3^2*g4^4*g5^2*t^8.58)/g1 - (g2^2*g3^4*g4^4*g5^2*t^8.58)/g1^2 - (g3^2*g4^2*g5^6*t^8.58)/g2^2 + g1*g2^4*g3^6*g4^4*g5^4*t^8.86 + g1*g2^4*g3^4*g4^6*g5^4*t^8.86 + g2^4*g3^6*g4^6*g5^4*t^8.86 + (g2^4*g3^8*g4^6*g5^4*t^8.86)/g1 + (g2^4*g3^6*g4^8*g5^4*t^8.86)/g1 + g1*g2^8*g3^4*g4^4*g5^4*t^8.89 + g2^8*g3^6*g4^4*g5^4*t^8.89 + g2^8*g3^4*g4^6*g5^4*t^8.89 + (g2^8*g3^6*g4^6*g5^4*t^8.89)/g1 + g1*g2^4*g3^4*g4^4*g5^8*t^8.89 + g2^4*g3^6*g4^4*g5^8*t^8.89 + g2^4*g3^4*g4^6*g5^8*t^8.89 + (g2^4*g3^6*g4^6*g5^8*t^8.89)/g1 + t^8.94/(g2^16*g5^16) - t^4.71/(g2*g3*g4*g5*y) - t^6.94/(g2^5*g3*g4*g5^5*y) - t^7.01/(g2*g3^3*g4^3*g5*y) + t^7.54/(g2^4*g3^2*g4^2*g5^4*y) + (g3^2*g4^2*t^7.81)/(g2^2*g5^2*y) + (g2^2*g5^2*t^7.88)/y + (g3*g4*t^8.41)/(g2*g5*y) + (g2^3*g5^3*t^8.48)/(g3*g4*y) + (g1*g3^2*t^8.93)/(g2^4*g5^4*y) + (g1*g4^2*t^8.93)/(g2^4*g5^4*y) + (g3^2*g4^2*t^8.93)/(g2^4*g5^4*y) + (g3^4*g4^2*t^8.93)/(g1*g2^4*g5^4*y) + (g3^2*g4^4*t^8.93)/(g1*g2^4*g5^4*y) + (g1*t^8.97)/(g2^4*y) + (g3^2*t^8.97)/(g2^4*y) + (g4^2*t^8.97)/(g2^4*y) + (g3^2*g4^2*t^8.97)/(g1*g2^4*y) + (g1*t^8.97)/(g5^4*y) + (g3^2*t^8.97)/(g5^4*y) + (g4^2*t^8.97)/(g5^4*y) + (g3^2*g4^2*t^8.97)/(g1*g5^4*y) - (t^4.71*y)/(g2*g3*g4*g5) - (t^6.94*y)/(g2^5*g3*g4*g5^5) - (t^7.01*y)/(g2*g3^3*g4^3*g5) + (t^7.54*y)/(g2^4*g3^2*g4^2*g5^4) + (g3^2*g4^2*t^7.81*y)/(g2^2*g5^2) + g2^2*g5^2*t^7.88*y + (g3*g4*t^8.41*y)/(g2*g5) + (g2^3*g5^3*t^8.48*y)/(g3*g4) + (g1*g3^2*t^8.93*y)/(g2^4*g5^4) + (g1*g4^2*t^8.93*y)/(g2^4*g5^4) + (g3^2*g4^2*t^8.93*y)/(g2^4*g5^4) + (g3^4*g4^2*t^8.93*y)/(g1*g2^4*g5^4) + (g3^2*g4^4*t^8.93*y)/(g1*g2^4*g5^4) + (g1*t^8.97*y)/g2^4 + (g3^2*t^8.97*y)/g2^4 + (g4^2*t^8.97*y)/g2^4 + (g3^2*g4^2*t^8.97*y)/(g1*g2^4) + (g1*t^8.97*y)/g5^4 + (g3^2*t^8.97*y)/g5^4 + (g4^2*t^8.97*y)/g5^4 + (g3^2*g4^2*t^8.97*y)/(g1*g5^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55602 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8901 | 1.0957 | 0.8124 | [X:[], M:[0.7598, 0.8431], q:[0.6201, 0.6201, 0.6029], qb:[0.6201, 0.6201, 0.6029], phi:[0.5785]] | t^2.28 + t^2.53 + t^3.62 + 8*t^3.67 + 5*t^3.72 + t^4.56 + t^4.81 + t^5.06 + 3*t^5.35 + 8*t^5.4 + 10*t^5.46 + t^5.9 - 15*t^6. - t^4.74/y - t^4.74*y | detail |