Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55809 | SU2adj1nf3 | $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ + $ \phi_1\tilde{q}_2^2$ | 0.8607 | 1.0496 | 0.82 | [X:[], M:[0.8293, 0.7041], q:[0.5853, 0.5853, 0.7444], qb:[0.7444, 0.7444, 0.5515], phi:[0.5111]] | [X:[], M:[[0, 0, -5, 1], [0, 0, -1, -1]], q:[[-1, 0, 5, -1], [1, 0, 0, 0], [0, -1, 2, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, 0, -2, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_2^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ M_1M_2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_1\tilde{q}_3$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ M_2\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_1\phi_1^2$ | . | -6 | t^2.11 + t^2.49 + t^3.07 + 2*t^3.41 + 2*t^3.89 + 6*t^3.99 + t^4.22 + 3*t^4.47 + t^4.6 + t^4.84 + 2*t^4.94 + t^4.98 + 3*t^5.05 + t^5.18 + 2*t^5.52 + t^5.55 - 6*t^6. + 4*t^6.1 + t^6.13 + t^6.34 + 2*t^6.38 + 2*t^6.48 + t^6.71 + 3*t^6.82 + 3*t^6.95 + 2*t^7.06 + t^7.09 + 3*t^7.16 + t^7.29 + 4*t^7.3 + t^7.33 + 9*t^7.4 + t^7.46 - t^7.53 + t^7.67 + 2*t^7.78 + 10*t^7.88 + t^7.91 + 15*t^7.98 + 2*t^8.01 + t^8.04 - 3*t^8.11 + 4*t^8.21 + 3*t^8.25 + 5*t^8.35 + t^8.45 + 14*t^8.46 - 3*t^8.49 + 2*t^8.59 + t^8.62 + t^8.69 + 2*t^8.73 + t^8.82 + 4*t^8.83 + 2*t^8.86 + 9*t^8.93 - t^4.53/y - t^6.65/y - t^7.02/y + t^7.47/y + t^8.05/y + t^8.18/y + t^8.42/y + (2*t^8.52)/y + t^8.55/y - t^8.76/y + (2*t^8.9)/y - t^4.53*y - t^6.65*y - t^7.02*y + t^7.47*y + t^8.05*y + t^8.18*y + t^8.42*y + 2*t^8.52*y + t^8.55*y - t^8.76*y + 2*t^8.9*y | t^2.11/(g3*g4) + (g4*t^2.49)/g3^5 + t^3.07/g3^4 + (g3^5*t^3.41)/g1 + g1*g4*t^3.41 + g2*g4*t^3.89 + (g3^2*g4*t^3.89)/g2 + g1*g2*t^3.99 + g1*g3*t^3.99 + (g1*g3^2*t^3.99)/g2 + (g2*g3^5*t^3.99)/(g1*g4) + (g3^6*t^3.99)/(g1*g4) + (g3^7*t^3.99)/(g1*g2*g4) + t^4.22/(g3^2*g4^2) + g2*g3*t^4.47 + g3^2*t^4.47 + (g3^3*t^4.47)/g2 + t^4.6/g3^6 + (g4^2*t^4.84)/g3^2 + (g3^3*t^4.94)/g1 + (g1*g4*t^4.94)/g3^2 + (g4^2*t^4.98)/g3^10 + (g1^2*t^5.05)/g3^2 + (g3^8*t^5.05)/(g1^2*g4^2) + (g3^3*t^5.05)/g4 + t^5.18/(g3^5*g4) + (g1*t^5.52)/g3 + (g3^4*t^5.52)/(g1*g4) + (g4*t^5.55)/g3^9 - 4*t^6. - (g3^5*t^6.)/(g1^2*g4) - (g1^2*g4*t^6.)/g3^5 + (g2*g3^4*t^6.1)/(g1*g4^2) + (g3^6*t^6.1)/(g1*g2*g4^2) + (g1*g2*t^6.1)/(g3*g4) + (g1*g3*t^6.1)/(g2*g4) + t^6.13/g3^8 + t^6.34/(g3^3*g4^3) + (g2*g4^2*t^6.38)/g3^5 + (g4^2*t^6.38)/(g2*g3^3) + (g3*t^6.48)/g1 + (g1*g4*t^6.48)/g3^4 + t^6.71/(g3^7*g4) + (g3^10*t^6.82)/g1^2 + g3^5*g4*t^6.82 + g1^2*g4^2*t^6.82 + (g2*g4*t^6.95)/g3^4 + (g4*t^6.95)/g3^3 + (g4*t^6.95)/(g2*g3^2) + (g1*t^7.06)/g3^3 + (g3^2*t^7.06)/(g1*g4) + (g4*t^7.09)/g3^11 + (g3^7*t^7.16)/(g1^2*g4^3) + (g3^2*t^7.16)/g4^2 + (g1^2*t^7.16)/(g3^3*g4) + t^7.29/(g3^6*g4^2) + (g2*g3^5*g4*t^7.3)/g1 + (g3^7*g4*t^7.3)/(g1*g2) + g1*g2*g4^2*t^7.3 + (g1*g3^2*g4^2*t^7.3)/g2 + (g4^3*t^7.33)/g3^7 + g2*g3^5*t^7.4 + g3^6*t^7.4 + (g3^7*t^7.4)/g2 + (g2*g3^10*t^7.4)/(g1^2*g4) + (g3^11*t^7.4)/(g1^2*g4) + (g3^12*t^7.4)/(g1^2*g2*g4) + g1^2*g2*g4*t^7.4 + g1^2*g3*g4*t^7.4 + (g1^2*g3^2*g4*t^7.4)/g2 + (g4^3*t^7.46)/g3^15 - t^7.53/g3^2 + t^7.67/g3^10 + g2^2*g4^2*t^7.78 + (g3^4*g4^2*t^7.78)/g2^2 + (g2^2*g3^5*t^7.88)/g1 + (g2*g3^6*t^7.88)/g1 + (g3^7*t^7.88)/g1 + (g3^8*t^7.88)/(g1*g2) + (g3^9*t^7.88)/(g1*g2^2) + g1*g2^2*g4*t^7.88 + g1*g2*g3*g4*t^7.88 + g1*g3^2*g4*t^7.88 + (g1*g3^3*g4*t^7.88)/g2 + (g1*g3^4*g4*t^7.88)/g2^2 + (g4^2*t^7.91)/g3^6 + g1^2*g2^2*t^7.98 + g1^2*g2*g3*t^7.98 + g1^2*g3^2*t^7.98 + (g1^2*g3^3*t^7.98)/g2 + (g1^2*g3^4*t^7.98)/g2^2 + (g2^2*g3^10*t^7.98)/(g1^2*g4^2) + (g2*g3^11*t^7.98)/(g1^2*g4^2) + (g3^12*t^7.98)/(g1^2*g4^2) + (g3^13*t^7.98)/(g1^2*g2*g4^2) + (g3^14*t^7.98)/(g1^2*g2^2*g4^2) + (g2^2*g3^5*t^7.98)/g4 + (g2*g3^6*t^7.98)/g4 + (g3^7*t^7.98)/g4 + (g3^8*t^7.98)/(g2*g4) + (g3^9*t^7.98)/(g2^2*g4) + t^8.01/(g1*g3) + (g1*g4*t^8.01)/g3^6 + (g4^2*t^8.04)/g3^14 - (3*t^8.11)/(g3*g4) + (g2*g3^3*t^8.21)/(g1*g4^3) + (g3^5*t^8.21)/(g1*g2*g4^3) + (g1*t^8.21)/(g2*g4^2) + (g1*g2*t^8.21)/(g3^2*g4^2) + t^8.25/(g3^9*g4) + (g3^3*g4^2*t^8.25)/g1 + (g1*g4^3*t^8.25)/g3^2 + (g3^8*t^8.35)/g1^2 + g2^2*g3*g4*t^8.35 + g3^3*g4*t^8.35 + (g3^5*g4*t^8.35)/g2^2 + (g1^2*g4^2*t^8.35)/g3^2 + t^8.45/(g3^4*g4^4) + g1*g2^2*g3*t^8.46 + g1*g2*g3^2*t^8.46 + 2*g1*g3^3*t^8.46 + (g1*g3^4*t^8.46)/g2 + (g1*g3^5*t^8.46)/g2^2 + (g3^13*t^8.46)/(g1^3*g4^2) + (g2^2*g3^6*t^8.46)/(g1*g4) + (g2*g3^7*t^8.46)/(g1*g4) + (2*g3^8*t^8.46)/(g1*g4) + (g3^9*t^8.46)/(g1*g2*g4) + (g3^10*t^8.46)/(g1*g2^2*g4) + (g1^3*g4*t^8.46)/g3^2 - (3*g4*t^8.49)/g3^5 + (g1*t^8.59)/g3^5 + t^8.59/(g1*g4) + (g4*t^8.62)/g3^13 + t^8.69/g4^2 + (g4^3*t^8.73)/g2 + (g2*g4^3*t^8.73)/g3^2 + t^8.82/(g3^8*g4^2) + (g2*g3^3*g4*t^8.83)/g1 + (g3^5*g4*t^8.83)/(g1*g2) + (g1*g4^2*t^8.83)/g2 + (g1*g2*g4^2*t^8.83)/g3^2 + (g2*g4^3*t^8.86)/g3^10 + (g4^3*t^8.86)/(g2*g3^8) + g2*g3^3*t^8.93 + g3^4*t^8.93 + (g3^5*t^8.93)/g2 + (g2*g3^8*t^8.93)/(g1^2*g4) + (g3^9*t^8.93)/(g1^2*g4) + (g3^10*t^8.93)/(g1^2*g2*g4) + (g1^2*g4*t^8.93)/g2 + (g1^2*g2*g4*t^8.93)/g3^2 + (g1^2*g4*t^8.93)/g3 - t^4.53/(g3^2*y) - t^6.65/(g3^3*g4*y) - (g4*t^7.02)/(g3^7*y) + (g3^2*t^7.47)/y + (g3^3*t^8.05)/(g4*y) + t^8.18/(g3^5*g4*y) + (g4*t^8.42)/(g3*y) + (g1*t^8.52)/(g3*y) + (g3^4*t^8.52)/(g1*g4*y) + (g4*t^8.55)/(g3^9*y) - t^8.76/(g3^4*g4^2*y) + (g4*t^8.9)/(g1*y) + (g1*g4^2*t^8.9)/(g3^5*y) - (t^4.53*y)/g3^2 - (t^6.65*y)/(g3^3*g4) - (g4*t^7.02*y)/g3^7 + g3^2*t^7.47*y + (g3^3*t^8.05*y)/g4 + (t^8.18*y)/(g3^5*g4) + (g4*t^8.42*y)/g3 + (g1*t^8.52*y)/g3 + (g3^4*t^8.52*y)/(g1*g4) + (g4*t^8.55*y)/g3^9 - (t^8.76*y)/(g3^4*g4^2) + (g4*t^8.9*y)/g1 + (g1*g4^2*t^8.9*y)/g3^5 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55679 | SU2adj1nf3 | $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ | 0.8762 | 1.0664 | 0.8217 | [X:[], M:[0.7818, 0.7818], q:[0.6091, 0.6091, 0.7394], qb:[0.7394, 0.6091, 0.6091], phi:[0.5212]] | 2*t^2.35 + t^3.13 + 4*t^3.65 + 8*t^4.05 + t^4.44 + 3*t^4.69 + 10*t^5.22 + 2*t^5.47 - 9*t^6. - t^4.56/y - t^4.56*y | detail |