Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55804 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_2\tilde{q}_1$ | 0.8747 | 1.0798 | 0.81 | [X:[], M:[0.7088, 0.8597], q:[0.5762, 0.7149, 0.5685], qb:[0.7149, 0.5762, 0.5685], phi:[0.5702]] | [X:[], M:[[0, -2, -2, 0], [2, 2, 2, 2]], q:[[-1, 3, 1, -1], [1, -1, 1, 1], [4, 0, 0, 0]], qb:[[0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ q_3\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ M_1^2$, $ q_2\tilde{q}_1$, $ M_1M_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_1q_3$, $ M_2^2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1q_3\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_1q_2$, $ M_2q_3\tilde{q}_3$ | $\phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$ | -6 | t^2.13 + t^2.58 + t^3.41 + 4*t^3.43 + t^3.46 + 4*t^3.85 + 3*t^3.87 + t^4.25 + t^4.29 + t^4.71 + 3*t^5.12 + 4*t^5.14 + t^5.16 + 3*t^5.17 + t^5.54 + 4*t^5.56 + t^5.58 + t^5.99 - 6*t^6. + 4*t^6.01 - 4*t^6.02 + t^6.04 + t^6.38 - 3*t^6.42 + 4*t^6.43 - 4*t^6.44 + 3*t^6.45 + t^6.82 + t^6.83 + 4*t^6.85 + 11*t^6.87 + 4*t^6.89 + t^6.91 + 3*t^7.25 + 4*t^7.26 + 16*t^7.28 - t^7.29 + 12*t^7.31 + 3*t^7.33 + t^7.66 + 10*t^7.7 - 7*t^7.71 + 12*t^7.72 - 4*t^7.73 + t^7.74 + 6*t^7.75 + t^8.12 - 6*t^8.13 + 4*t^8.14 - 4*t^8.15 + t^8.51 + 3*t^8.53 + 12*t^8.56 + t^8.57 + 7*t^8.58 + 7*t^8.59 + 8*t^8.6 + t^8.62 + 3*t^8.63 + t^8.95 + t^8.96 + 12*t^8.97 - t^4.71/y - t^6.84/y + t^7.71/y + t^8.54/y + (4*t^8.56)/y + (2*t^8.58)/y - t^8.96/y + (4*t^8.98)/y + t^8.99/y - t^4.71*y - t^6.84*y + t^7.71*y + t^8.54*y + 4*t^8.56*y + 2*t^8.58*y - t^8.96*y + 4*t^8.98*y + t^8.99*y | t^2.13/(g2^2*g3^2) + g1^2*g2^2*g3^2*g4^2*t^2.58 + g1^4*g4^4*t^3.41 + g1^4*g3^2*t^3.43 + (g1^3*g2^3*g3*t^3.43)/g4 + (g2^3*g3*g4^3*t^3.43)/g1 + g3^2*g4^4*t^3.43 + (g2^3*g3^3*t^3.46)/(g1*g4) + g1^4*g2^2*t^3.85 + (g1^5*g3*g4*t^3.85)/g2 + g2^2*g4^4*t^3.85 + (g1*g3*g4^5*t^3.85)/g2 + g2^2*g3^2*t^3.87 + (g2^5*g3*t^3.87)/(g1*g4) + (g1*g3^3*g4*t^3.87)/g2 + t^4.25/(g2^4*g3^4) + g1*g2*g3*g4*t^4.29 + g1^2*g4^2*t^4.71 + (g1^7*t^5.12)/(g2*g3*g4) + (g1^3*g4^3*t^5.12)/(g2*g3) + (g4^7*t^5.12)/(g1*g2*g3) + (g1^2*g2^2*t^5.14)/g4^2 + (g1^3*g3*t^5.14)/(g2*g4) + (g2^2*g4^2*t^5.14)/g1^2 + (g3*g4^3*t^5.14)/(g1*g2) + g1^4*g2^4*g3^4*g4^4*t^5.16 + (g2^5*g3*t^5.17)/(g1^3*g4^3) + (g2^2*g3^2*t^5.17)/(g1^2*g4^2) + (g3^3*t^5.17)/(g1*g2*g4) + (g1^4*g4^4*t^5.54)/(g2^2*g3^2) + (g1^4*t^5.56)/g2^2 + (g1^3*g2*t^5.56)/(g3*g4) + (g2*g4^3*t^5.56)/(g1*g3) + (g4^4*t^5.56)/g2^2 + (g2*g3*t^5.58)/(g1*g4) + g1^6*g2^2*g3^2*g4^6*t^5.99 - 4*t^6. - (g1^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 + g1^5*g2^5*g3^3*g4*t^6.01 + g1^6*g2^2*g3^4*g4^2*t^6.01 + g1*g2^5*g3^3*g4^5*t^6.01 + g1^2*g2^2*g3^4*g4^6*t^6.01 - (g3^2*t^6.02)/g1^4 - (g2^3*g3*t^6.02)/(g1*g4^5) - (g3^2*t^6.02)/g4^4 - (g2^3*g3*t^6.02)/(g1^5*g4) + g1*g2^5*g3^5*g4*t^6.04 + t^6.38/(g2^6*g3^6) - (g2^2*t^6.42)/g3^2 - (g1*g4*t^6.42)/(g2*g3) - (g1^2*g4^2*t^6.42)/g2^4 + g1^6*g2^4*g3^2*g4^2*t^6.43 + g1^7*g2*g3^3*g4^3*t^6.43 + g1^2*g2^4*g3^2*g4^6*t^6.43 + g1^3*g2*g3^3*g4^7*t^6.43 - (g2^2*t^6.44)/g1^4 - (g2^2*t^6.44)/g4^4 - (g1*g3*t^6.44)/(g2*g4^3) - (g3*g4*t^6.44)/(g1^3*g2) + g1*g2^7*g3^3*g4*t^6.45 + g1^2*g2^4*g3^4*g4^2*t^6.45 + g1^3*g2*g3^5*g4^3*t^6.45 + g1^8*g4^8*t^6.82 + (g1^2*g4^2*t^6.83)/(g2^2*g3^2) + g1^7*g2^3*g3*g4^3*t^6.85 + g1^8*g3^2*g4^4*t^6.85 + g1^3*g2^3*g3*g4^7*t^6.85 + g1^4*g3^2*g4^8*t^6.85 + g1^8*g3^4*t^6.87 + (g1^6*g2^6*g3^2*t^6.87)/g4^2 + (g1^7*g2^3*g3^3*t^6.87)/g4 + g1^2*g2^6*g3^2*g4^2*t^6.87 + 3*g1^3*g2^3*g3^3*g4^3*t^6.87 + g1^4*g3^4*g4^4*t^6.87 + (g2^6*g3^2*g4^6*t^6.87)/g1^2 + (g2^3*g3^3*g4^7*t^6.87)/g1 + g3^4*g4^8*t^6.87 + (g1^2*g2^6*g3^4*t^6.89)/g4^2 + (g1^3*g2^3*g3^5*t^6.89)/g4 + (g2^6*g3^4*g4^2*t^6.89)/g1^2 + (g2^3*g3^5*g4^3*t^6.89)/g1 + (g2^6*g3^6*t^6.91)/(g1^2*g4^2) + (g1^7*t^7.25)/(g2^3*g3^3*g4) + (g1^3*g4^3*t^7.25)/(g2^3*g3^3) + (g4^7*t^7.25)/(g1*g2^3*g3^3) + g1^8*g2^2*g4^4*t^7.26 + (g1^9*g3*g4^5*t^7.26)/g2 + g1^4*g2^2*g4^8*t^7.26 + (g1^5*g3*g4^9*t^7.26)/g2 + 2*g1^8*g2^2*g3^2*t^7.28 + (g1^7*g2^5*g3*t^7.28)/g4 + (g1^9*g3^3*g4*t^7.28)/g2 + 2*g1^3*g2^5*g3*g4^3*t^7.28 + 4*g1^4*g2^2*g3^2*g4^4*t^7.28 + (2*g1^5*g3^3*g4^5*t^7.28)/g2 + (g2^5*g3*g4^7*t^7.28)/g1 + 2*g2^2*g3^2*g4^8*t^7.28 + (g1*g3^3*g4^9*t^7.28)/g2 - t^7.29/(g1^2*g4^2) + 2*g1^4*g2^2*g3^4*t^7.31 + (g1^2*g2^8*g3^2*t^7.31)/g4^2 + (2*g1^3*g2^5*g3^3*t^7.31)/g4 + (g1^5*g3^5*g4*t^7.31)/g2 + (g2^8*g3^2*g4^2*t^7.31)/g1^2 + (2*g2^5*g3^3*g4^3*t^7.31)/g1 + 2*g2^2*g3^4*g4^4*t^7.31 + (g1*g3^5*g4^5*t^7.31)/g2 + g2^2*g3^6*t^7.33 + (g2^8*g3^4*t^7.33)/(g1^2*g4^2) + (g2^5*g3^5*t^7.33)/(g1*g4) + (g1^4*g4^4*t^7.66)/(g2^4*g3^4) + g1^8*g2^4*t^7.7 + g1^9*g2*g3*g4*t^7.7 + (g1^10*g3^2*g4^2*t^7.7)/g2^2 + g1^4*g2^4*g4^4*t^7.7 + 2*g1^5*g2*g3*g4^5*t^7.7 + (g1^6*g3^2*g4^6*t^7.7)/g2^2 + g2^4*g4^8*t^7.7 + g1*g2*g3*g4^9*t^7.7 + (g1^2*g3^2*g4^10*t^7.7)/g2^2 - t^7.71/g2^4 - (g1^3*t^7.71)/(g2*g3*g4^5) - (g2^2*t^7.71)/(g1^2*g3^2*g4^2) - (3*t^7.71)/(g1*g2*g3*g4) - (g4^3*t^7.71)/(g1^5*g2*g3) + 2*g1^4*g2^4*g3^2*t^7.72 + (g1^3*g2^7*g3*t^7.72)/g4 + 2*g1^5*g2*g3^3*g4*t^7.72 + (g1^6*g3^4*g4^2*t^7.72)/g2^2 + (g2^7*g3*g4^3*t^7.72)/g1 + 2*g2^4*g3^2*g4^4*t^7.72 + 2*g1*g2*g3^3*g4^5*t^7.72 + (g1^2*g3^4*g4^6*t^7.72)/g2^2 - (g2^2*t^7.73)/(g1^2*g4^6) - (g3*t^7.73)/(g1*g2*g4^5) - (g2^2*t^7.73)/(g1^6*g4^2) - (g3*t^7.73)/(g1^5*g2*g4) + g1^6*g2^6*g3^6*g4^6*t^7.74 + 2*g2^4*g3^4*t^7.75 + (g2^10*g3^2*t^7.75)/(g1^2*g4^2) + (g2^7*g3^3*t^7.75)/(g1*g4) + g1*g2*g3^5*g4*t^7.75 + (g1^2*g3^6*g4^2*t^7.75)/g2^2 + g1^6*g4^6*t^8.12 - (4*t^8.13)/(g2^2*g3^2) - (g1^4*t^8.13)/(g2^2*g3^2*g4^4) - (g4^4*t^8.13)/(g1^4*g2^2*g3^2) + g1^5*g2^3*g3*g4*t^8.14 + g1^6*g3^2*g4^2*t^8.14 + g1*g2^3*g3*g4^5*t^8.14 + g1^2*g3^2*g4^6*t^8.14 - t^8.15/(g1^4*g2^2) - (g2*t^8.15)/(g1*g3*g4^5) - t^8.15/(g2^2*g4^4) - (g2*t^8.15)/(g1^5*g3*g4) + t^8.51/(g2^8*g3^8) + (g1^11*g4^3*t^8.53)/(g2*g3) + (g1^7*g4^7*t^8.53)/(g2*g3) + (g1^3*g4^11*t^8.53)/(g2*g3) + (g1^10*g2^2*t^8.56)/g4^2 + (g1^11*g3*t^8.56)/(g2*g4) + 2*g1^6*g2^2*g4^2*t^8.56 + (2*g1^7*g3*g4^3*t^8.56)/g2 + 2*g1^2*g2^2*g4^6*t^8.56 + (2*g1^3*g3*g4^7*t^8.56)/g2 + (g2^2*g4^10*t^8.56)/g1^2 + (g3*g4^11*t^8.56)/(g1*g2) + g1^8*g2^4*g3^4*g4^8*t^8.57 + (g1^5*g2^5*g3*t^8.58)/g4^3 + (g1^6*g2^2*g3^2*t^8.58)/g4^2 + (g1^7*g3^3*t^8.58)/(g2*g4) + g1*g2^5*g3*g4*t^8.58 - g1^2*g2^2*g3^2*g4^2*t^8.58 + (g1^3*g3^3*g4^3*t^8.58)/g2 + (g2^5*g3*g4^5*t^8.58)/g1^3 + (g2^2*g3^2*g4^6*t^8.58)/g1^2 + (g3^3*g4^7*t^8.58)/(g1*g2) + t^8.59/g1^8 + t^8.59/g4^8 + t^8.59/(g1^4*g4^4) + g1^7*g2^7*g3^5*g4^3*t^8.59 + g1^8*g2^4*g3^6*g4^4*t^8.59 + g1^3*g2^7*g3^5*g4^7*t^8.59 + g1^4*g2^4*g3^6*g4^8*t^8.59 + (g2^8*g3^2*t^8.6)/g1^4 + (g2^8*g3^2*t^8.6)/g4^4 + (g1*g2^5*g3^3*t^8.6)/g4^3 + (g1^2*g2^2*g3^4*t^8.6)/g4^2 + (g1^3*g3^5*t^8.6)/(g2*g4) + (g2^5*g3^3*g4*t^8.6)/g1^3 + (g2^2*g3^4*g4^2*t^8.6)/g1^2 + (g3^5*g4^3*t^8.6)/(g1*g2) + g1^3*g2^7*g3^7*g4^3*t^8.62 + (g2^8*g3^4*t^8.63)/(g1^4*g4^4) + (g2^5*g3^5*t^8.63)/(g1^3*g4^3) + (g2^2*g3^6*t^8.63)/(g1^2*g4^2) + (g1^8*g4^8*t^8.95)/(g2^2*g3^2) + (g1^2*g4^2*t^8.96)/(g2^4*g3^4) + (g1^12*t^8.97)/g2^2 + (g1^11*g2*t^8.97)/(g3*g4) + (2*g1^7*g2*g4^3*t^8.97)/g3 + (2*g1^8*g4^4*t^8.97)/g2^2 + (2*g1^3*g2*g4^7*t^8.97)/g3 + (2*g1^4*g4^8*t^8.97)/g2^2 + (g2*g4^11*t^8.97)/(g1*g3) + (g4^12*t^8.97)/g2^2 - t^4.71/(g1*g2*g3*g4*y) - t^6.84/(g1*g2^3*g3^3*g4*y) + (g1^2*g4^2*t^7.71)/y + (g1^4*g4^4*t^8.54)/(g2^2*g3^2*y) + (g1^4*t^8.56)/(g2^2*y) + (g1^3*g2*t^8.56)/(g3*g4*y) + (g2*g4^3*t^8.56)/(g1*g3*y) + (g4^4*t^8.56)/(g2^2*y) + (2*g2*g3*t^8.58)/(g1*g4*y) - t^8.96/(g1*g2^5*g3^5*g4*y) + (g1^4*t^8.98)/(g3^2*y) + (g1^5*g4*t^8.98)/(g2^3*g3*y) + (g4^4*t^8.98)/(g3^2*y) + (g1*g4^5*t^8.98)/(g2^3*g3*y) + (g1^6*g2^2*g3^2*g4^6*t^8.99)/y - (t^4.71*y)/(g1*g2*g3*g4) - (t^6.84*y)/(g1*g2^3*g3^3*g4) + g1^2*g4^2*t^7.71*y + (g1^4*g4^4*t^8.54*y)/(g2^2*g3^2) + (g1^4*t^8.56*y)/g2^2 + (g1^3*g2*t^8.56*y)/(g3*g4) + (g2*g4^3*t^8.56*y)/(g1*g3) + (g4^4*t^8.56*y)/g2^2 + (2*g2*g3*t^8.58*y)/(g1*g4) - (t^8.96*y)/(g1*g2^5*g3^5*g4) + (g1^4*t^8.98*y)/g3^2 + (g1^5*g4*t^8.98*y)/(g2^3*g3) + (g4^4*t^8.98*y)/g3^2 + (g1*g4^5*t^8.98*y)/(g2^3*g3) + g1^6*g2^2*g3^2*g4^6*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55602 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8901 | 1.0957 | 0.8124 | [X:[], M:[0.7598, 0.8431], q:[0.6201, 0.6201, 0.6029], qb:[0.6201, 0.6201, 0.6029], phi:[0.5785]] | t^2.28 + t^2.53 + t^3.62 + 8*t^3.67 + 5*t^3.72 + t^4.56 + t^4.81 + t^5.06 + 3*t^5.35 + 8*t^5.4 + 10*t^5.46 + t^5.9 - 15*t^6. - t^4.74/y - t^4.74*y | detail |