Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55802 | SU2adj1nf3 | $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ | 0.9116 | 1.136 | 0.8025 | [X:[], M:[0.7257, 0.7257, 0.6686], q:[0.729, 0.6495, 0.6248], qb:[0.6248, 0.6024, 0.6016], phi:[0.542]] | [X:[], M:[[-7, -7, 0, 0, 0], [-7, 0, -7, 0, 0], [-1, -1, -1, -8, -1]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_2$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_3$, $ M_3^2$, $ q_1q_3$, $ q_1\tilde{q}_1$, $ q_1q_2$, $ M_2M_3$, $ M_1M_3$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ M_3\phi_1^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_3$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_3\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$ | . | -8 | t^2.01 + 2*t^2.18 + t^3.25 + t^3.61 + 4*t^3.68 + 2*t^3.75 + t^3.76 + t^3.99 + t^4.01 + 2*t^4.06 + t^4.14 + 2*t^4.18 + 3*t^4.35 + 3*t^5.24 + t^5.26 + 4*t^5.31 + 3*t^5.37 + 2*t^5.38 + 2*t^5.43 + 2*t^5.45 + t^5.52 + t^5.62 + 2*t^5.68 + 2*t^5.69 + t^5.75 + 2*t^5.76 + 2*t^5.79 + 6*t^5.86 - 8*t^6. + t^6.02 - 4*t^6.07 - t^6.14 + 2*t^6.17 + 2*t^6.19 + 3*t^6.24 + 3*t^6.36 - 2*t^6.38 + t^6.5 + 4*t^6.53 + t^6.86 + 4*t^6.93 + t^7. + 2*t^7.01 + t^7.22 + 2*t^7.24 + t^7.26 + 4*t^7.29 + 4*t^7.31 + 10*t^7.36 + 2*t^7.37 + 4*t^7.38 + t^7.39 + 2*t^7.41 + 4*t^7.42 + 8*t^7.43 + 4*t^7.44 + 2*t^7.45 + 6*t^7.48 + t^7.5 + 3*t^7.51 + t^7.53 + 4*t^7.55 + t^7.6 + 3*t^7.61 - 3*t^7.63 + 4*t^7.67 + 2*t^7.69 - 2*t^7.7 + 7*t^7.74 + 2*t^7.75 + 2*t^7.76 - t^7.77 + 2*t^7.79 + 4*t^7.81 + 2*t^7.82 + 6*t^7.86 + 2*t^7.89 + 3*t^7.97 - 2*t^7.99 - 8*t^8.01 + t^8.02 + 4*t^8.03 + 4*t^8.04 - 2*t^8.06 - 4*t^8.08 - 2*t^8.11 - t^8.13 - t^8.15 - 14*t^8.18 + 2*t^8.19 - 4*t^8.25 + 3*t^8.35 + t^8.37 + t^8.39 + 4*t^8.42 - 2*t^8.44 + 2*t^8.49 + 4*t^8.54 + 5*t^8.63 + 2*t^8.68 + 2*t^8.7 + 5*t^8.71 - t^8.75 + t^8.77 + 3*t^8.85 + t^8.87 + 2*t^8.91 + 10*t^8.92 + 4*t^8.94 + 4*t^8.98 + 16*t^8.99 - t^4.63/y - t^6.63/y - (2*t^6.8)/y + (2*t^7.18)/y + t^7.35/y + t^7.37/y - t^7.88/y + t^8.26/y + (2*t^8.43)/y + (2*t^8.45)/y + (2*t^8.62)/y - t^8.64/y + (2*t^8.68)/y + (2*t^8.69)/y + t^8.75/y + (2*t^8.76)/y + (2*t^8.79)/y - (2*t^8.81)/y + (8*t^8.86)/y + (6*t^8.93)/y - (3*t^8.98)/y - t^4.63*y - t^6.63*y - 2*t^6.8*y + 2*t^7.18*y + t^7.35*y + t^7.37*y - t^7.88*y + t^8.26*y + 2*t^8.43*y + 2*t^8.45*y + 2*t^8.62*y - t^8.64*y + 2*t^8.68*y + 2*t^8.69*y + t^8.75*y + 2*t^8.76*y + 2*t^8.79*y - 2*t^8.81*y + 8*t^8.86*y + 6*t^8.93*y - 3*t^8.98*y | t^2.01/(g1*g2*g3*g4^8*g5) + t^2.18/(g1^7*g2^7) + t^2.18/(g1^7*g3^7) + t^3.25/(g1^4*g2^4*g3^4*g4^4*g5^4) + g4^7*g5^7*t^3.61 + g2^7*g4^7*t^3.68 + g3^7*g4^7*t^3.68 + g2^7*g5^7*t^3.68 + g3^7*g5^7*t^3.68 + g2^7*g3^7*t^3.75 + g1^7*g5^7*t^3.75 + g1^7*g4^7*t^3.76 + g1*g2*g3*g4*g5^8*t^3.99 + t^4.01/(g1^2*g2^2*g3^2*g4^16*g5^2) + g1*g2^8*g3*g4*g5*t^4.06 + g1*g2*g3^8*g4*g5*t^4.06 + g1^8*g2*g3*g4*g5*t^4.14 + t^4.18/(g1^8*g2*g3^8*g4^8*g5) + t^4.18/(g1^8*g2^8*g3*g4^8*g5) + t^4.35/(g1^14*g2^14) + t^4.35/(g1^14*g3^14) + t^4.35/(g1^14*g2^7*g3^7) + (g4^12*t^5.24)/(g1^2*g2^2*g3^2*g5^2) + (g4^5*g5^5*t^5.24)/(g1^2*g2^2*g3^2) + (g5^12*t^5.24)/(g1^2*g2^2*g3^2*g4^2) + t^5.26/(g1^5*g2^5*g3^5*g4^12*g5^5) + (g2^5*g4^5*t^5.31)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.31)/(g1^2*g2^2*g5^2) + (g2^5*g5^5*t^5.31)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.31)/(g1^2*g2^2*g4^2) + (g2^12*t^5.37)/(g1^2*g3^2*g4^2*g5^2) + (g2^5*g3^5*t^5.37)/(g1^2*g4^2*g5^2) + (g3^12*t^5.37)/(g1^2*g2^2*g4^2*g5^2) + (g1^5*g4^5*t^5.38)/(g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.38)/(g2^2*g3^2*g4^2) + t^5.43/(g1^11*g2^4*g3^11*g4^4*g5^4) + t^5.43/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g1^5*g2^5*t^5.45)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.45)/(g2^2*g4^2*g5^2) + (g1^12*t^5.52)/(g2^2*g3^2*g4^2*g5^2) + (g5^6*t^5.62)/(g1*g2*g3*g4) + (g2^6*g5^6*t^5.68)/(g1*g3*g4^8) + (g3^6*g5^6*t^5.68)/(g1*g2*g4^8) + (g2^6*t^5.69)/(g1*g3*g4*g5) + (g3^6*t^5.69)/(g1*g2*g4*g5) + (g2^6*g3^6*t^5.75)/(g1*g4^8*g5) + (g1^6*t^5.76)/(g2*g3*g4*g5) + (g1^6*g5^6*t^5.76)/(g2*g3*g4^8) + (g4^7*g5^7*t^5.79)/(g1^7*g2^7) + (g4^7*g5^7*t^5.79)/(g1^7*g3^7) + (g4^7*t^5.86)/g1^7 + (g2^7*g4^7*t^5.86)/(g1^7*g3^7) + (g3^7*g4^7*t^5.86)/(g1^7*g2^7) + (g5^7*t^5.86)/g1^7 + (g2^7*g5^7*t^5.86)/(g1^7*g3^7) + (g3^7*g5^7*t^5.86)/(g1^7*g2^7) - 5*t^6. - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g2^7 - (g4^7*t^6.)/g5^7 + t^6.02/(g1^3*g2^3*g3^3*g4^24*g5^3) - (g1^7*t^6.07)/g2^7 - (g1^7*t^6.07)/g3^7 - (g2^7*t^6.07)/g5^7 - (g3^7*t^6.07)/g5^7 - (g1^7*t^6.14)/g5^7 + (g2*g4*g5^8*t^6.17)/(g1^6*g3^6) + (g3*g4*g5^8*t^6.17)/(g1^6*g2^6) + t^6.19/(g1^9*g2^2*g3^9*g4^16*g5^2) + t^6.19/(g1^9*g2^9*g3^2*g4^16*g5^2) + (g2^8*g4*g5*t^6.24)/(g1^6*g3^6) + (g2*g3*g4*g5*t^6.24)/g1^6 + (g3^8*g4*g5*t^6.24)/(g1^6*g2^6) + t^6.36/(g1^15*g2*g3^15*g4^8*g5) + t^6.36/(g1^15*g2^8*g3^8*g4^8*g5) + t^6.36/(g1^15*g2^15*g3*g4^8*g5) - (g1*g2*g3*g4*t^6.38)/g5^6 - (g1*g2*g3*g5*t^6.38)/g4^6 + t^6.5/(g1^8*g2^8*g3^8*g4^8*g5^8) + t^6.53/(g1^21*g2^21) + t^6.53/(g1^21*g3^21) + t^6.53/(g1^21*g2^7*g3^14) + t^6.53/(g1^21*g2^14*g3^7) + (g4^3*g5^3*t^6.86)/(g1^4*g2^4*g3^4) + (g2^3*g4^3*t^6.93)/(g1^4*g3^4*g5^4) + (g3^3*g4^3*t^6.93)/(g1^4*g2^4*g5^4) + (g2^3*g5^3*t^6.93)/(g1^4*g3^4*g4^4) + (g3^3*g5^3*t^6.93)/(g1^4*g2^4*g4^4) + (g2^3*g3^3*t^7.)/(g1^4*g4^4*g5^4) + (g1^3*g4^3*t^7.01)/(g2^4*g3^4*g5^4) + (g1^3*g5^3*t^7.01)/(g2^4*g3^4*g4^4) + g4^14*g5^14*t^7.22 + (g5^4*t^7.24)/(g1^3*g2^3*g3^3*g4^3) + (g5^11*t^7.24)/(g1^3*g2^3*g3^3*g4^10) + t^7.26/(g1^6*g2^6*g3^6*g4^20*g5^6) + g2^7*g4^14*g5^7*t^7.29 + g3^7*g4^14*g5^7*t^7.29 + g2^7*g4^7*g5^14*t^7.29 + g3^7*g4^7*g5^14*t^7.29 + (g2^4*t^7.31)/(g1^3*g3^3*g4^3*g5^3) + (g3^4*t^7.31)/(g1^3*g2^3*g4^3*g5^3) + (g2^4*g5^4*t^7.31)/(g1^3*g3^3*g4^10) + (g3^4*g5^4*t^7.31)/(g1^3*g2^3*g4^10) + g2^14*g4^14*t^7.36 + g2^7*g3^7*g4^14*t^7.36 + g3^14*g4^14*t^7.36 + g2^14*g4^7*g5^7*t^7.36 + 2*g2^7*g3^7*g4^7*g5^7*t^7.36 + g3^14*g4^7*g5^7*t^7.36 + g2^14*g5^14*t^7.36 + g2^7*g3^7*g5^14*t^7.36 + g3^14*g5^14*t^7.36 + g1^7*g4^14*g5^7*t^7.37 + g1^7*g4^7*g5^14*t^7.37 + (g2^11*t^7.38)/(g1^3*g3^3*g4^10*g5^3) + (g2^4*g3^4*t^7.38)/(g1^3*g4^10*g5^3) + (g3^11*t^7.38)/(g1^3*g2^3*g4^10*g5^3) + (g1^4*g5^4*t^7.38)/(g2^3*g3^3*g4^10) + (g1^4*t^7.39)/(g2^3*g3^3*g4^3*g5^3) + (g5^12*t^7.41)/(g1^9*g2^2*g3^9*g4^2) + (g5^12*t^7.41)/(g1^9*g2^9*g3^2*g4^2) + (g4^12*t^7.42)/(g1^9*g2^2*g3^9*g5^2) + (g4^12*t^7.42)/(g1^9*g2^9*g3^2*g5^2) + (g4^5*g5^5*t^7.42)/(g1^9*g2^2*g3^9) + (g4^5*g5^5*t^7.42)/(g1^9*g2^9*g3^2) + g2^14*g3^7*g4^7*t^7.43 + g2^7*g3^14*g4^7*t^7.43 + t^7.43/(g1^12*g2^5*g3^12*g4^12*g5^5) + t^7.43/(g1^12*g2^12*g3^5*g4^12*g5^5) + g2^14*g3^7*g5^7*t^7.43 + g2^7*g3^14*g5^7*t^7.43 + g1^7*g2^7*g5^14*t^7.43 + g1^7*g3^7*g5^14*t^7.43 + g1^7*g2^7*g4^14*t^7.44 + g1^7*g3^7*g4^14*t^7.44 + g1^7*g2^7*g4^7*g5^7*t^7.44 + g1^7*g3^7*g4^7*g5^7*t^7.44 + (g1^4*g2^4*t^7.45)/(g3^3*g4^10*g5^3) + (g1^4*g3^4*t^7.45)/(g2^3*g4^10*g5^3) + (g2^5*g4^5*t^7.48)/(g1^9*g3^9*g5^2) + (g4^5*t^7.48)/(g1^9*g2^2*g3^2*g5^2) + (g3^5*g4^5*t^7.48)/(g1^9*g2^9*g5^2) + (g2^5*g5^5*t^7.48)/(g1^9*g3^9*g4^2) + (g5^5*t^7.48)/(g1^9*g2^2*g3^2*g4^2) + (g3^5*g5^5*t^7.48)/(g1^9*g2^9*g4^2) + g2^14*g3^14*t^7.5 + g1^14*g4^14*t^7.51 + g1^14*g4^7*g5^7*t^7.51 + g1^14*g5^14*t^7.51 + (g1^11*t^7.53)/(g2^3*g3^3*g4^10*g5^3) + (g2^12*t^7.55)/(g1^9*g3^9*g4^2*g5^2) + (g2^5*t^7.55)/(g1^9*g3^2*g4^2*g5^2) + (g3^5*t^7.55)/(g1^9*g2^2*g4^2*g5^2) + (g3^12*t^7.55)/(g1^9*g2^9*g4^2*g5^2) + g1*g2*g3*g4^8*g5^15*t^7.6 + t^7.61/(g1^18*g2^4*g3^18*g4^4*g5^4) + t^7.61/(g1^18*g2^11*g3^11*g4^4*g5^4) + t^7.61/(g1^18*g2^18*g3^4*g4^4*g5^4) - (g4^5*t^7.63)/(g1^2*g2^2*g3^2*g5^9) - (2*t^7.63)/(g1^2*g2^2*g3^2*g4^2*g5^2) + g1*g2^8*g3*g4^8*g5^8*t^7.67 + g1*g2*g3^8*g4^8*g5^8*t^7.67 + g1*g2^8*g3*g4*g5^15*t^7.67 + g1*g2*g3^8*g4*g5^15*t^7.67 + (g2^5*g5^5*t^7.69)/(g1^2*g3^2*g4^16) + (g3^5*g5^5*t^7.69)/(g1^2*g2^2*g4^16) - (g2^5*t^7.7)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.7)/(g1^2*g2^2*g4^2*g5^9) + g1*g2^15*g3*g4^8*g5*t^7.74 + g1*g2^8*g3^8*g4^8*g5*t^7.74 + g1*g2*g3^15*g4^8*g5*t^7.74 + g1*g2^15*g3*g4*g5^8*t^7.74 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.74 + g1*g2*g3^15*g4*g5^8*t^7.74 + g1^8*g2*g3*g4^8*g5^8*t^7.75 + g1^8*g2*g3*g4*g5^15*t^7.75 + (g2^5*g3^5*t^7.76)/(g1^2*g4^16*g5^2) + (g1^5*g5^5*t^7.76)/(g2^2*g3^2*g4^16) - (g1^5*t^7.77)/(g2^2*g3^2*g4^2*g5^9) + (g5^6*t^7.79)/(g1^8*g2*g3^8*g4) + (g5^6*t^7.79)/(g1^8*g2^8*g3*g4) + g1*g2^15*g3^8*g4*g5*t^7.81 + g1*g2^8*g3^15*g4*g5*t^7.81 + g1^8*g2^8*g3*g4*g5^8*t^7.81 + g1^8*g2*g3^8*g4*g5^8*t^7.81 + g1^8*g2^8*g3*g4^8*g5*t^7.82 + g1^8*g2*g3^8*g4^8*g5*t^7.82 + (g2^6*t^7.86)/(g1^8*g3^8*g4*g5) + t^7.86/(g1^8*g2*g3*g4*g5) + (g3^6*t^7.86)/(g1^8*g2^8*g4*g5) + (g2^6*g5^6*t^7.86)/(g1^8*g3^8*g4^8) + (g5^6*t^7.86)/(g1^8*g2*g3*g4^8) + (g3^6*g5^6*t^7.86)/(g1^8*g2^8*g4^8) + g1^15*g2*g3*g4^8*g5*t^7.89 + g1^15*g2*g3*g4*g5^8*t^7.89 + (g4^7*g5^7*t^7.97)/(g1^14*g2^14) + (g4^7*g5^7*t^7.97)/(g1^14*g3^14) + (g4^7*g5^7*t^7.97)/(g1^14*g2^7*g3^7) - g1^2*g2^2*g3^2*g4^16*g5^2*t^7.99 - g1^2*g2^2*g3^2*g4^9*g5^9*t^7.99 - t^8.01/(g1*g2*g3*g4*g5^8) - (g2^6*t^8.01)/(g1*g3^8*g4^8*g5) - (5*t^8.01)/(g1*g2*g3*g4^8*g5) - (g3^6*t^8.01)/(g1*g2^8*g4^8*g5) + t^8.02/(g1^4*g2^4*g3^4*g4^32*g5^4) + (g5^7*t^8.03)/(g1^14*g2^7) + (g2^7*g5^7*t^8.03)/(g1^14*g3^14) + (g5^7*t^8.03)/(g1^14*g3^7) + (g3^7*g5^7*t^8.03)/(g1^14*g2^14) + (g4^7*t^8.04)/(g1^14*g2^7) + (g2^7*g4^7*t^8.04)/(g1^14*g3^14) + (g4^7*t^8.04)/(g1^14*g3^7) + (g3^7*g4^7*t^8.04)/(g1^14*g2^14) - g1^2*g2^9*g3^2*g4^9*g5^2*t^8.06 - g1^2*g2^2*g3^9*g4^9*g5^2*t^8.06 - (g2^6*t^8.08)/(g1*g3*g4^8*g5^8) - (g3^6*t^8.08)/(g1*g2*g4^8*g5^8) - (g1^6*t^8.08)/(g2*g3^8*g4^8*g5) - (g1^6*t^8.08)/(g2^8*g3*g4^8*g5) - (g4^7*t^8.11)/(g1^7*g2^7*g3^7) - (g5^7*t^8.11)/(g1^7*g2^7*g3^7) - g1^9*g2^2*g3^2*g4^9*g5^2*t^8.13 - (g1^6*t^8.15)/(g2*g3*g4^8*g5^8) - (5*t^8.18)/(g1^7*g2^7) - (g2^7*t^8.18)/(g1^7*g3^14) - (5*t^8.18)/(g1^7*g3^7) - (g3^7*t^8.18)/(g1^7*g2^14) - (g4^7*t^8.18)/(g1^7*g2^7*g5^7) - (g4^7*t^8.18)/(g1^7*g3^7*g5^7) + t^8.19/(g1^10*g2^3*g3^10*g4^24*g5^3) + t^8.19/(g1^10*g2^10*g3^3*g4^24*g5^3) - t^8.25/(g2^7*g3^7) - t^8.25/(g1^7*g5^7) - (g2^7*t^8.25)/(g1^7*g3^7*g5^7) - (g3^7*t^8.25)/(g1^7*g2^7*g5^7) + (g2*g4*g5^8*t^8.35)/(g1^13*g3^13) + (g4*g5^8*t^8.35)/(g1^13*g2^6*g3^6) + (g3*g4*g5^8*t^8.35)/(g1^13*g2^13) + t^8.37/(g1^16*g2^2*g3^16*g4^16*g5^2) + t^8.37/(g1^16*g2^9*g3^9*g4^16*g5^2) + t^8.37/(g1^16*g2^16*g3^2*g4^16*g5^2) - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.37 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.37 + t^8.39/g5^14 + (g2^8*g4*g5*t^8.42)/(g1^13*g3^13) + (g2*g4*g5*t^8.42)/(g1^13*g3^6) + (g3*g4*g5*t^8.42)/(g1^13*g2^6) + (g3^8*g4*g5*t^8.42)/(g1^13*g2^13) - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.44 - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.44 + (g4^8*t^8.49)/(g1^6*g2^6*g3^6*g5^6) + (g5^8*t^8.49)/(g1^6*g2^6*g3^6*g4^6) + t^8.51/(g1^9*g2^9*g3^9*g4^16*g5^9) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.51 + t^8.54/(g1^22*g2*g3^22*g4^8*g5) + t^8.54/(g1^22*g2^8*g3^15*g4^8*g5) + t^8.54/(g1^22*g2^15*g3^8*g4^8*g5) + t^8.54/(g1^22*g2^22*g3*g4^8*g5) + (g2^8*t^8.63)/(g1^6*g3^6*g4^6*g5^6) + (g2*g3*t^8.63)/(g1^6*g4^6*g5^6) + (g3^8*t^8.63)/(g1^6*g2^6*g4^6*g5^6) + (g1*g4*t^8.63)/(g2^6*g3^6*g5^6) + (g1*g5*t^8.63)/(g2^6*g3^6*g4^6) + t^8.68/(g1^15*g2^8*g3^15*g4^8*g5^8) + t^8.68/(g1^15*g2^15*g3^8*g4^8*g5^8) + (g1*g2*t^8.7)/(g3^6*g4^6*g5^6) + (g1*g3*t^8.7)/(g2^6*g4^6*g5^6) + t^8.71/(g1^28*g2^28) + t^8.71/(g1^28*g3^28) + t^8.71/(g1^28*g2^7*g3^21) + t^8.71/(g1^28*g2^14*g3^14) + t^8.71/(g1^28*g2^21*g3^7) - g1^4*g2^4*g3^4*g4^4*g5^4*t^8.75 + (g1^8*t^8.77)/(g2^6*g3^6*g4^6*g5^6) + (g4^19*g5^5*t^8.85)/(g1^2*g2^2*g3^2) + (g4^12*g5^12*t^8.85)/(g1^2*g2^2*g3^2) + (g4^5*g5^19*t^8.85)/(g1^2*g2^2*g3^2) + (g5^2*t^8.87)/(g1^5*g2^5*g3^5*g4^5) + (g2^5*g5^19*t^8.91)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.91)/(g1^2*g2^2*g4^2) + (g2^5*g4^19*t^8.92)/(g1^2*g3^2*g5^2) + (g3^5*g4^19*t^8.92)/(g1^2*g2^2*g5^2) + (2*g2^5*g4^12*g5^5*t^8.92)/(g1^2*g3^2) + (2*g3^5*g4^12*g5^5*t^8.92)/(g1^2*g2^2) + (2*g2^5*g4^5*g5^12*t^8.92)/(g1^2*g3^2) + (2*g3^5*g4^5*g5^12*t^8.92)/(g1^2*g2^2) + (g2^2*t^8.94)/(g1^5*g3^5*g4^5*g5^5) + (g3^2*t^8.94)/(g1^5*g2^5*g4^5*g5^5) + (g2^2*g5^2*t^8.94)/(g1^5*g3^5*g4^12) + (g3^2*g5^2*t^8.94)/(g1^5*g2^5*g4^12) + (g2^12*g5^12*t^8.98)/(g1^2*g3^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.98)/(g1^2*g4^2) + (g3^12*g5^12*t^8.98)/(g1^2*g2^2*g4^2) + (g2^12*g4^12*t^8.99)/(g1^2*g3^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.99)/(g1^2*g5^2) + (g3^12*g4^12*t^8.99)/(g1^2*g2^2*g5^2) + (2*g2^12*g4^5*g5^5*t^8.99)/(g1^2*g3^2) + (3*g2^5*g3^5*g4^5*g5^5*t^8.99)/g1^2 + (2*g3^12*g4^5*g5^5*t^8.99)/(g1^2*g2^2) + (2*g1^5*g4^12*g5^5*t^8.99)/(g2^2*g3^2) + (2*g1^5*g4^5*g5^12*t^8.99)/(g2^2*g3^2) + (g1^5*g5^19*t^8.99)/(g2^2*g3^2*g4^2) - t^4.63/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.63/(g1^3*g2^3*g3^3*g4^10*g5^3*y) - t^6.8/(g1^9*g2^2*g3^9*g4^2*g5^2*y) - t^6.8/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + t^7.18/(g1^8*g2*g3^8*g4^8*g5*y) + t^7.18/(g1^8*g2^8*g3*g4^8*g5*y) + t^7.35/(g1^14*g2^7*g3^7*y) + (g1^2*g2^2*g3^2*g4^2*g5^2*t^7.37)/y - t^7.88/(g1^6*g2^6*g3^6*g4^6*g5^6*y) + t^8.26/(g1^5*g2^5*g3^5*g4^12*g5^5*y) + t^8.43/(g1^11*g2^4*g3^11*g4^4*g5^4*y) + t^8.43/(g1^11*g2^11*g3^4*g4^4*g5^4*y) + (g1^5*g2^5*t^8.45)/(g3^2*g4^2*g5^2*y) + (g1^5*g3^5*t^8.45)/(g2^2*g4^2*g5^2*y) + (g4^6*t^8.62)/(g1*g2*g3*g5*y) + (g5^6*t^8.62)/(g1*g2*g3*g4*y) - t^8.64/(g1^4*g2^4*g3^4*g4^18*g5^4*y) + (g2^6*g5^6*t^8.68)/(g1*g3*g4^8*y) + (g3^6*g5^6*t^8.68)/(g1*g2*g4^8*y) + (g2^6*t^8.69)/(g1*g3*g4*g5*y) + (g3^6*t^8.69)/(g1*g2*g4*g5*y) + (g2^6*g3^6*t^8.75)/(g1*g4^8*g5*y) + (g1^6*t^8.76)/(g2*g3*g4*g5*y) + (g1^6*g5^6*t^8.76)/(g2*g3*g4^8*y) + (g4^7*g5^7*t^8.79)/(g1^7*g2^7*y) + (g4^7*g5^7*t^8.79)/(g1^7*g3^7*y) - t^8.81/(g1^10*g2^3*g3^10*g4^10*g5^3*y) - t^8.81/(g1^10*g2^10*g3^3*g4^10*g5^3*y) + (2*g4^7*t^8.86)/(g1^7*y) + (g2^7*g4^7*t^8.86)/(g1^7*g3^7*y) + (g3^7*g4^7*t^8.86)/(g1^7*g2^7*y) + (2*g5^7*t^8.86)/(g1^7*y) + (g2^7*g5^7*t^8.86)/(g1^7*g3^7*y) + (g3^7*g5^7*t^8.86)/(g1^7*g2^7*y) + (g2^7*t^8.93)/(g1^7*y) + (g3^7*t^8.93)/(g1^7*y) + (g4^7*t^8.93)/(g2^7*y) + (g4^7*t^8.93)/(g3^7*y) + (g5^7*t^8.93)/(g2^7*y) + (g5^7*t^8.93)/(g3^7*y) - t^8.98/(g1^16*g2^2*g3^16*g4^2*g5^2*y) - t^8.98/(g1^16*g2^9*g3^9*g4^2*g5^2*y) - t^8.98/(g1^16*g2^16*g3^2*g4^2*g5^2*y) - (t^4.63*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.63*y)/(g1^3*g2^3*g3^3*g4^10*g5^3) - (t^6.8*y)/(g1^9*g2^2*g3^9*g4^2*g5^2) - (t^6.8*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + (t^7.18*y)/(g1^8*g2*g3^8*g4^8*g5) + (t^7.18*y)/(g1^8*g2^8*g3*g4^8*g5) + (t^7.35*y)/(g1^14*g2^7*g3^7) + g1^2*g2^2*g3^2*g4^2*g5^2*t^7.37*y - (t^7.88*y)/(g1^6*g2^6*g3^6*g4^6*g5^6) + (t^8.26*y)/(g1^5*g2^5*g3^5*g4^12*g5^5) + (t^8.43*y)/(g1^11*g2^4*g3^11*g4^4*g5^4) + (t^8.43*y)/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g1^5*g2^5*t^8.45*y)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^8.45*y)/(g2^2*g4^2*g5^2) + (g4^6*t^8.62*y)/(g1*g2*g3*g5) + (g5^6*t^8.62*y)/(g1*g2*g3*g4) - (t^8.64*y)/(g1^4*g2^4*g3^4*g4^18*g5^4) + (g2^6*g5^6*t^8.68*y)/(g1*g3*g4^8) + (g3^6*g5^6*t^8.68*y)/(g1*g2*g4^8) + (g2^6*t^8.69*y)/(g1*g3*g4*g5) + (g3^6*t^8.69*y)/(g1*g2*g4*g5) + (g2^6*g3^6*t^8.75*y)/(g1*g4^8*g5) + (g1^6*t^8.76*y)/(g2*g3*g4*g5) + (g1^6*g5^6*t^8.76*y)/(g2*g3*g4^8) + (g4^7*g5^7*t^8.79*y)/(g1^7*g2^7) + (g4^7*g5^7*t^8.79*y)/(g1^7*g3^7) - (t^8.81*y)/(g1^10*g2^3*g3^10*g4^10*g5^3) - (t^8.81*y)/(g1^10*g2^10*g3^3*g4^10*g5^3) + (2*g4^7*t^8.86*y)/g1^7 + (g2^7*g4^7*t^8.86*y)/(g1^7*g3^7) + (g3^7*g4^7*t^8.86*y)/(g1^7*g2^7) + (2*g5^7*t^8.86*y)/g1^7 + (g2^7*g5^7*t^8.86*y)/(g1^7*g3^7) + (g3^7*g5^7*t^8.86*y)/(g1^7*g2^7) + (g2^7*t^8.93*y)/g1^7 + (g3^7*t^8.93*y)/g1^7 + (g4^7*t^8.93*y)/g2^7 + (g4^7*t^8.93*y)/g3^7 + (g5^7*t^8.93*y)/g2^7 + (g5^7*t^8.93*y)/g3^7 - (t^8.98*y)/(g1^16*g2^2*g3^16*g4^2*g5^2) - (t^8.98*y)/(g1^16*g2^9*g3^9*g4^2*g5^2) - (t^8.98*y)/(g1^16*g2^16*g3^2*g4^2*g5^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55689 | SU2adj1nf3 | $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ | 0.8908 | 1.0945 | 0.8139 | [X:[], M:[0.7257, 0.7257], q:[0.7289, 0.6495, 0.6248], qb:[0.6248, 0.6016, 0.6016], phi:[0.5422]] | 2*t^2.18 + t^3.25 + t^3.61 + 4*t^3.68 + 3*t^3.75 + 2*t^3.99 + 2*t^4.06 + t^4.14 + 3*t^4.35 + 3*t^5.24 + 4*t^5.31 + 5*t^5.38 + 2*t^5.43 + 2*t^5.45 + t^5.52 + 2*t^5.79 + 6*t^5.86 - 9*t^6. - t^4.63/y - t^4.63*y | detail |