Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55801 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_3^2$ 0.8612 1.0536 0.8174 [X:[], M:[0.827, 0.6703], q:[0.5872, 0.5858, 0.7425], qb:[0.7425, 0.7425, 0.5394], phi:[0.5151]] [X:[], M:[[0, -5, -5, 1], [1, -6, -6, 1]], q:[[-1, 5, 5, -1], [1, 0, 0, 0], [0, 1, 1, 0]], qb:[[0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]], phi:[[0, -2, -2, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_2^2$, $ q_3\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_3$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1^2$, $ M_2\phi_1^2$, $ \phi_1q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1\phi_1^2$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_2q_3\tilde{q}_3$ $M_2q_2q_3$, $ M_2q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_2$ -3 t^2.01 + t^2.48 + t^3.09 + 2*t^3.38 + 3*t^3.85 + 3*t^3.98 + 2*t^3.99 + t^4.02 + 3*t^4.45 + t^4.49 + t^4.78 + 2*t^4.92 + t^4.96 + 2*t^5.06 + t^5.07 + t^5.1 + 2*t^5.39 + t^5.57 + 3*t^5.86 - 3*t^6. + t^6.03 - 2*t^6.14 + t^6.18 + 3*t^6.33 + 4*t^6.47 + t^6.5 - 3*t^6.61 + t^6.75 + 2*t^6.76 + t^6.79 + t^6.93 + 4*t^6.94 + t^6.97 + t^7.07 + t^7.08 + t^7.11 + 3*t^7.22 + 3*t^7.23 + t^7.26 + 5*t^7.36 + 2*t^7.37 + 2*t^7.4 + t^7.44 - t^7.55 + t^7.58 - t^7.68 + 4*t^7.69 + 13*t^7.83 + 4*t^7.87 + 7*t^7.97 + 2*t^7.98 - t^8.01 + t^8.04 + t^8.05 + 3*t^8.16 + t^8.19 + 8*t^8.3 + 3*t^8.34 + 10*t^8.44 + t^8.45 - t^8.48 + t^8.51 - 3*t^8.62 + 3*t^8.63 + t^8.66 + 2*t^8.76 + 7*t^8.77 + t^8.8 + 3*t^8.81 + 7*t^8.91 + t^8.94 + 3*t^8.95 + t^8.98 - t^4.55/y - t^6.56/y - t^7.03/y + t^7.45/y + t^7.49/y - t^7.64/y + t^8.06/y + t^8.1/y + (2*t^8.39)/y + t^8.53/y + (5*t^8.86)/y - t^4.55*y - t^6.56*y - t^7.03*y + t^7.45*y + t^7.49*y - t^7.64*y + t^8.06*y + t^8.1*y + 2*t^8.39*y + t^8.53*y + 5*t^8.86*y (g1*g4*t^2.01)/(g2^6*g3^6) + (g4*t^2.48)/(g2^5*g3^5) + t^3.09/(g2^4*g3^4) + (g2^5*g3^5*t^3.38)/g1 + g1*g4*t^3.38 + g2^2*g4*t^3.85 + g2*g3*g4*t^3.85 + g3^2*g4*t^3.85 + g1*g2^2*t^3.98 + g1*g2*g3*t^3.98 + g1*g3^2*t^3.98 + (g2^7*g3^5*t^3.99)/(g1*g4) + (g2^5*g3^7*t^3.99)/(g1*g4) + (g1^2*g4^2*t^4.02)/(g2^12*g3^12) + g2^3*g3*t^4.45 + g2^2*g3^2*t^4.45 + g2*g3^3*t^4.45 + (g1*g4^2*t^4.49)/(g2^11*g3^11) + (g4^2*t^4.78)/(g2^2*g3^2) + (g2^3*g3^3*t^4.92)/g1 + (g1*g4*t^4.92)/(g2^2*g3^2) + (g4^2*t^4.96)/(g2^10*g3^10) + (g1^2*t^5.06)/(g2^2*g3^2) + (g2^3*g3^3*t^5.06)/g4 + (g2^8*g3^8*t^5.07)/(g1^2*g4^2) + (g1*g4*t^5.1)/(g2^10*g3^10) + (g4*t^5.39)/(g2*g3) + (g1^2*g4^2*t^5.39)/(g2^6*g3^6) + (g4*t^5.57)/(g2^9*g3^9) + (g1*g4^2*t^5.86)/(g2^4*g3^6) + (g1*g4^2*t^5.86)/(g2^5*g3^5) + (g1*g4^2*t^5.86)/(g2^6*g3^4) - 4*t^6. - (g2^5*g3^5*t^6.)/(g1^2*g4) + (g1^2*g4*t^6.)/(g2^4*g3^6) + (g1^2*g4*t^6.)/(g2^6*g3^4) + (g1^3*g4^3*t^6.03)/(g2^18*g3^18) - (g2^5*g3^5*t^6.14)/(g1*g4^2) - (g1*t^6.14)/g4 + t^6.18/(g2^8*g3^8) + (g4^2*t^6.33)/(g2^3*g3^5) + (g4^2*t^6.33)/(g2^4*g3^4) + (g4^2*t^6.33)/(g2^5*g3^3) + (g1*g4*t^6.47)/(g2^3*g3^5) + (2*g1*g4*t^6.47)/(g2^4*g3^4) + (g1*g4*t^6.47)/(g2^5*g3^3) + (g1^2*g4^3*t^6.5)/(g2^17*g3^17) - (g2^2*t^6.61)/g4 - (g2*g3*t^6.61)/g4 - (g3^2*t^6.61)/g4 + g1^2*g4^2*t^6.75 + (g2^10*g3^10*t^6.76)/g1^2 + g2^5*g3^5*g4*t^6.76 + (g1*g4^3*t^6.79)/(g2^8*g3^8) + (g1^2*g4^2*t^6.93)/(g2^8*g3^8) + (g4*t^6.94)/(g2^2*g3^4) + (2*g4*t^6.94)/(g2^3*g3^3) + (g4*t^6.94)/(g2^4*g3^2) + (g1*g4^3*t^6.97)/(g2^16*g3^16) + (g1^3*g4*t^7.07)/(g2^8*g3^8) + (g1*t^7.08)/(g2^3*g3^3) + (g1^2*g4^2*t^7.11)/(g2^16*g3^16) + g1*g2^2*g4^2*t^7.22 + g1*g2*g3*g4^2*t^7.22 + g1*g3^2*g4^2*t^7.22 + (g2^7*g3^5*g4*t^7.23)/g1 + (g2^6*g3^6*g4*t^7.23)/g1 + (g2^5*g3^7*g4*t^7.23)/g1 + (g4^3*t^7.26)/(g2^7*g3^7) + g2^7*g3^5*t^7.36 + g2^5*g3^7*t^7.36 + g1^2*g2^2*g4*t^7.36 + g1^2*g2*g3*g4*t^7.36 + g1^2*g3^2*g4*t^7.36 + (g2^12*g3^10*t^7.37)/(g1^2*g4) + (g2^10*g3^12*t^7.37)/(g1^2*g4) + (g1*g4^2*t^7.4)/(g2^7*g3^7) + (g1^3*g4^3*t^7.4)/(g2^12*g3^12) + (g4^3*t^7.44)/(g2^15*g3^15) - t^7.55/(g2^2*g3^2) + (g1*g4^2*t^7.58)/(g2^15*g3^15) - (g1*t^7.68)/(g2^2*g3^2*g4) - (g2^3*g3^3*t^7.69)/(g1*g4^2) + g2^4*g4^2*t^7.69 + g2^3*g3*g4^2*t^7.69 + g2^2*g3^2*g4^2*t^7.69 + g2*g3^3*g4^2*t^7.69 + g3^4*g4^2*t^7.69 + (g2^9*g3^5*t^7.83)/g1 + (g2^8*g3^6*t^7.83)/g1 + (g2^7*g3^7*t^7.83)/g1 + (g2^6*g3^8*t^7.83)/g1 + (g2^5*g3^9*t^7.83)/g1 + g1*g2^4*g4*t^7.83 + 2*g1*g2^3*g3*g4*t^7.83 + 2*g1*g2^2*g3^2*g4*t^7.83 + 2*g1*g2*g3^3*g4*t^7.83 + g1*g3^4*g4*t^7.83 + (g4^2*t^7.87)/(g2^6*g3^6) + (g1^2*g4^3*t^7.87)/(g2^10*g3^12) + (g1^2*g4^3*t^7.87)/(g2^11*g3^11) + (g1^2*g4^3*t^7.87)/(g2^12*g3^10) + g1^2*g2^4*t^7.97 + g1^2*g2^3*g3*t^7.97 + g1^2*g2^2*g3^2*t^7.97 + g1^2*g2*g3^3*t^7.97 + g1^2*g3^4*t^7.97 + (g2^9*g3^5*t^7.97)/g4 + (g2^5*g3^9*t^7.97)/g4 + (g2^14*g3^10*t^7.98)/(g1^2*g4^2) + (g2^10*g3^14*t^7.98)/(g1^2*g4^2) - (3*g1*g4*t^8.01)/(g2^6*g3^6) + (g1^3*g4^2*t^8.01)/(g2^10*g3^12) + (g1^3*g4^2*t^8.01)/(g2^12*g3^10) + (g1^4*g4^4*t^8.04)/(g2^24*g3^24) + (g4^2*t^8.05)/(g2^14*g3^14) + (g2^4*g3^4*t^8.16)/(g1^2*g4^2) + (g2^3*g3^3*g4^2*t^8.16)/g1 + (g1*g4^3*t^8.16)/(g2^2*g3^2) + (g1*g4*t^8.19)/(g2^14*g3^14) + (g2^8*g3^8*t^8.3)/g1^2 + g2^5*g3*g4*t^8.3 + g2^4*g3^2*g4*t^8.3 + 2*g2^3*g3^3*g4*t^8.3 + g2^2*g3^4*g4*t^8.3 + g2*g3^5*g4*t^8.3 + (g1^2*g4^2*t^8.3)/(g2^2*g3^2) + (g1*g4^3*t^8.34)/(g2^9*g3^11) + (g1*g4^3*t^8.34)/(g2^10*g3^10) + (g1*g4^3*t^8.34)/(g2^11*g3^9) + g1*g2^5*g3*t^8.44 + g1*g2^4*g3^2*t^8.44 + 2*g1*g2^3*g3^3*t^8.44 + g1*g2^2*g3^4*t^8.44 + g1*g2*g3^5*t^8.44 + (g2^10*g3^6*t^8.44)/(g1*g4) + (g2^8*g3^8*t^8.44)/(g1*g4) + (g2^6*g3^10*t^8.44)/(g1*g4) + (g1^3*g4*t^8.44)/(g2^2*g3^2) + (g2^13*g3^13*t^8.45)/(g1^3*g4^2) - (g4*t^8.48)/(g2^4*g3^6) - (3*g4*t^8.48)/(g2^5*g3^5) - (g4*t^8.48)/(g2^6*g3^4) + (g1^2*g4^2*t^8.48)/(g2^9*g3^11) + (2*g1^2*g4^2*t^8.48)/(g2^10*g3^10) + (g1^2*g4^2*t^8.48)/(g2^11*g3^9) + (g1^3*g4^4*t^8.51)/(g2^23*g3^23) - (g1*t^8.62)/(g2^4*g3^6) - (g1*t^8.62)/(g2^5*g3^5) - (g1*t^8.62)/(g2^6*g3^4) + (g4^3*t^8.63)/g2^2 + (g4^3*t^8.63)/g3^2 + (g4^3*t^8.63)/(g2*g3) + (g4*t^8.66)/(g2^13*g3^13) + t^8.76/g4^2 + (g1^3*g4^3*t^8.76)/(g2^6*g3^6) + (g2^5*g3^3*g4*t^8.77)/g1 + (g2^4*g3^4*g4*t^8.77)/g1 + (g2^3*g3^5*g4*t^8.77)/g1 + (g1*g4^2*t^8.77)/g2^2 + (g1*g4^2*t^8.77)/g3^2 + (2*g1*g4^2*t^8.77)/(g2*g3) + (g1^2*g4^4*t^8.8)/(g2^14*g3^14) + (g4^3*t^8.81)/(g2^8*g3^10) + (g4^3*t^8.81)/(g2^9*g3^9) + (g4^3*t^8.81)/(g2^10*g3^8) + g2^5*g3^3*t^8.91 + g2^3*g3^5*t^8.91 + (g2^10*g3^8*t^8.91)/(g1^2*g4) + (g2^8*g3^10*t^8.91)/(g1^2*g4) + (g1^2*g4*t^8.91)/g2^2 + (g1^2*g4*t^8.91)/g3^2 + (g1^2*g4*t^8.91)/(g2*g3) + (g1^3*g4^3*t^8.94)/(g2^14*g3^14) - (g4*t^8.95)/(g1*g2^4*g3^4) + (g1*g4^2*t^8.95)/(g2^8*g3^10) + (2*g1*g4^2*t^8.95)/(g2^9*g3^9) + (g1*g4^2*t^8.95)/(g2^10*g3^8) + (g1^2*g4^4*t^8.98)/(g2^22*g3^22) - t^4.55/(g2^2*g3^2*y) - (g1*g4*t^6.56)/(g2^8*g3^8*y) - (g4*t^7.03)/(g2^7*g3^7*y) + (g2^2*g3^2*t^7.45)/y + (g1*g4^2*t^7.49)/(g2^11*g3^11*y) - t^7.64/(g2^6*g3^6*y) + (g2^3*g3^3*t^8.06)/(g4*y) + (g1*g4*t^8.1)/(g2^10*g3^10*y) + (g4*t^8.39)/(g2*g3*y) + (g1^2*g4^2*t^8.39)/(g2^6*g3^6*y) + (g2^4*g3^4*t^8.53)/(g1*g4*y) + (g4*t^8.57)/(g2^9*g3^9*y) - (g1^2*g4^2*t^8.57)/(g2^14*g3^14*y) + (g4*t^8.86)/(g1*y) + (g1*g4^2*t^8.86)/(g2^4*g3^6*y) + (2*g1*g4^2*t^8.86)/(g2^5*g3^5*y) + (g1*g4^2*t^8.86)/(g2^6*g3^4*y) - (t^4.55*y)/(g2^2*g3^2) - (g1*g4*t^6.56*y)/(g2^8*g3^8) - (g4*t^7.03*y)/(g2^7*g3^7) + g2^2*g3^2*t^7.45*y + (g1*g4^2*t^7.49*y)/(g2^11*g3^11) - (t^7.64*y)/(g2^6*g3^6) + (g2^3*g3^3*t^8.06*y)/g4 + (g1*g4*t^8.1*y)/(g2^10*g3^10) + (g4*t^8.39*y)/(g2*g3) + (g1^2*g4^2*t^8.39*y)/(g2^6*g3^6) + (g2^4*g3^4*t^8.53*y)/(g1*g4) + (g4*t^8.57*y)/(g2^9*g3^9) - (g1^2*g4^2*t^8.57*y)/(g2^14*g3^14) + (g4*t^8.86*y)/g1 + (g1*g4^2*t^8.86*y)/(g2^4*g3^6) + (2*g1*g4^2*t^8.86*y)/(g2^5*g3^5) + (g1*g4^2*t^8.86*y)/(g2^6*g3^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55670 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ 0.878 1.0728 0.8184 [X:[], M:[0.7561, 0.7561], q:[0.639, 0.6049, 0.6049], qb:[0.737, 0.737, 0.5735], phi:[0.5259]] 2*t^2.27 + t^3.16 + 2*t^3.54 + t^3.63 + t^3.64 + 2*t^3.93 + 4*t^4.03 + 2*t^4.13 + t^4.42 + 3*t^4.54 + t^5.02 + 2*t^5.11 + 3*t^5.21 + t^5.22 + 2*t^5.31 + t^5.41 + 2*t^5.42 + 3*t^5.8 - 7*t^6. - t^4.58/y - t^4.58*y detail