Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55799 SU2adj1nf3 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{3}$ + ${ }M_{2}q_{2}q_{3}$ 0.8363 1.027 0.8144 [X:[], M:[0.714, 0.714], q:[0.7669, 0.5191, 0.7669], qb:[0.7373, 0.4895, 0.7373], phi:[0.4957]] [X:[], M:[[-3, -3, 1, 1], [-3, -2, 1, 0]], q:[[1, 1, 0, -1], [2, 2, -1, 0], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[-1, -1, 0, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}q_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{3}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}^{4}$ ${}\phi_{1}^{2}q_{2}\tilde{q}_{2}$ -5 2*t^2.14 + t^2.97 + t^3.03 + 2*t^3.68 + 4*t^3.77 + 3*t^4.28 + 2*t^4.42 + 5*t^4.51 + 2*t^4.6 + 2*t^5.12 + 2*t^5.17 + 4*t^5.82 + 6*t^5.91 + t^5.95 - 5*t^6. + t^6.05 - 2*t^6.09 + 4*t^6.43 + 4*t^6.57 + 8*t^6.65 + 2*t^6.71 + 4*t^6.79 - 4*t^6.83 + 3*t^7.26 + 3*t^7.31 + 3*t^7.36 + 8*t^7.45 + 10*t^7.54 + 6*t^7.96 + 8*t^8.05 + 2*t^8.09 + 4*t^8.1 - 10*t^8.14 + 14*t^8.19 - 4*t^8.23 + 12*t^8.28 + 2*t^8.37 + 5*t^8.57 + 6*t^8.71 + 11*t^8.8 + 6*t^8.85 - 2*t^8.89 + t^8.92 + 8*t^8.94 - 8*t^8.97 - t^4.49/y - (2*t^6.63)/y + t^7.28/y - t^7.46/y + t^7.51/y + (2*t^8.12)/y + (2*t^8.17)/y + (2*t^8.35)/y - (3*t^8.77)/y + (4*t^8.82)/y + (8*t^8.91)/y - t^4.49*y - 2*t^6.63*y + t^7.28*y - t^7.46*y + t^7.51*y + 2*t^8.12*y + 2*t^8.17*y + 2*t^8.35*y - 3*t^8.77*y + 4*t^8.82*y + 8*t^8.91*y (g3*t^2.14)/(g1^3*g2^2) + (g3*g4*t^2.14)/(g1^3*g2^3) + t^2.97/(g1^2*g2^2) + g1^2*g2^2*t^3.03 + g2*g3*t^3.68 + g3*g4*t^3.68 + (g1^2*g2^3*t^3.77)/g3 + g1*g3*t^3.77 + (g1*g2*g3*t^3.77)/g4 + (g1^2*g2^2*g4*t^3.77)/g3 + (g3^2*t^4.28)/(g1^6*g2^4) + (g3^2*g4*t^4.28)/(g1^6*g2^5) + (g3^2*g4^2*t^4.28)/(g1^6*g2^6) + (g3^2*t^4.42)/(g1*g2) + g2*g4*t^4.42 + 3*g1*g2*t^4.51 + (g1*g2^2*t^4.51)/g4 + g1*g4*t^4.51 + (g1^3*g2^3*t^4.6)/g3^2 + (g1^2*g2*t^4.6)/g4 + (g3*t^5.12)/(g1^5*g2^4) + (g3*g4*t^5.12)/(g1^5*g2^5) + (g3*t^5.17)/g1 + (g3*g4*t^5.17)/(g1*g2) + (g3^2*t^5.82)/(g1^3*g2) + (2*g3^2*g4*t^5.82)/(g1^3*g2^2) + (g3^2*g4^2*t^5.82)/(g1^3*g2^3) + (g2*t^5.91)/g1 + (g3^2*t^5.91)/(g1^2*g2^2) + (g3^2*t^5.91)/(g1^2*g2*g4) + (g4*t^5.91)/g1 + (g3^2*g4*t^5.91)/(g1^2*g2^3) + (g4^2*t^5.91)/(g1*g2) + t^5.95/(g1^4*g2^4) - 3*t^6. - (g2*t^6.)/g4 - (g4*t^6.)/g2 + g1^4*g2^4*t^6.05 - (g1^2*g2^2*t^6.09)/g3^2 - (g1*t^6.09)/g4 + (g3^3*t^6.43)/(g1^9*g2^6) + (g3^3*g4*t^6.43)/(g1^9*g2^7) + (g3^3*g4^2*t^6.43)/(g1^9*g2^8) + (g3^3*g4^3*t^6.43)/(g1^9*g2^9) + (g3^3*t^6.57)/(g1^4*g2^3) + (g3*g4*t^6.57)/(g1^3*g2) + (g3^3*g4*t^6.57)/(g1^4*g2^4) + (g3*g4^2*t^6.57)/(g1^3*g2^2) + (3*g3*t^6.65)/(g1^2*g2) + (g3*t^6.65)/(g1^2*g4) + (3*g3*g4*t^6.65)/(g1^2*g2^2) + (g3*g4^2*t^6.65)/(g1^2*g2^3) + g1^2*g2^3*g3*t^6.71 + g1^2*g2^2*g3*g4*t^6.71 + (g1^4*g2^5*t^6.79)/g3 + g1^3*g2^2*g3*t^6.79 + (g1^3*g2^3*g3*t^6.79)/g4 + (g1^4*g2^4*g4*t^6.79)/g3 - (2*g1*t^6.83)/g3 - (2*g1*g2*t^6.83)/(g3*g4) + (g3^2*t^7.26)/(g1^8*g2^6) + (g3^2*g4*t^7.26)/(g1^8*g2^7) + (g3^2*g4^2*t^7.26)/(g1^8*g2^8) + (g3^2*t^7.31)/(g1^4*g2^2) + (g3^2*g4*t^7.31)/(g1^4*g2^3) + (g3^2*g4^2*t^7.31)/(g1^4*g2^4) + g2^2*g3^2*t^7.36 + g2*g3^2*g4*t^7.36 + g3^2*g4^2*t^7.36 + g1^2*g2^4*t^7.45 + 2*g1*g2*g3^2*t^7.45 + (g1*g2^2*g3^2*t^7.45)/g4 + 2*g1^2*g2^3*g4*t^7.45 + g1*g3^2*g4*t^7.45 + g1^2*g2^2*g4^2*t^7.45 + 2*g1^3*g2^3*t^7.54 + (g1^4*g2^6*t^7.54)/g3^2 + g1^2*g3^2*t^7.54 + (g1^2*g2^2*g3^2*t^7.54)/g4^2 + (g1^3*g2^4*t^7.54)/g4 + (g1^2*g2*g3^2*t^7.54)/g4 + g1^3*g2^2*g4*t^7.54 + (g1^4*g2^5*g4*t^7.54)/g3^2 + (g1^4*g2^4*g4^2*t^7.54)/g3^2 + (g3^3*t^7.96)/(g1^6*g2^3) + (2*g3^3*g4*t^7.96)/(g1^6*g2^4) + (2*g3^3*g4^2*t^7.96)/(g1^6*g2^5) + (g3^3*g4^3*t^7.96)/(g1^6*g2^6) + (g3*t^8.05)/(g1^4*g2) + (g3^3*t^8.05)/(g1^5*g2^4) + (g3^3*t^8.05)/(g1^5*g2^3*g4) + (g3*g4*t^8.05)/(g1^4*g2^2) + (g3^3*g4*t^8.05)/(g1^5*g2^5) + (g3*g4^2*t^8.05)/(g1^4*g2^3) + (g3^3*g4^2*t^8.05)/(g1^5*g2^6) + (g3*g4^3*t^8.05)/(g1^4*g2^4) + (g3*t^8.09)/(g1^7*g2^6) + (g3*g4*t^8.09)/(g1^7*g2^7) + (g3^3*t^8.1)/g1 + g2^2*g3*g4*t^8.1 + (g3^3*g4*t^8.1)/(g1*g2) + g2*g3*g4^2*t^8.1 - (4*g3*t^8.14)/(g1^3*g2^2) - (g3*t^8.14)/(g1^3*g2*g4) - (4*g3*g4*t^8.14)/(g1^3*g2^3) - (g3*g4^2*t^8.14)/(g1^3*g2^4) + 4*g1*g2^2*g3*t^8.19 + (g3^3*t^8.19)/g2 + (g1*g2^3*g3*t^8.19)/g4 + (g3^3*t^8.19)/g4 + (g1^2*g2^4*g4*t^8.19)/g3 + 4*g1*g2*g3*g4*t^8.19 + (g1^2*g2^3*g4^2*t^8.19)/g3 + g1*g3*g4^2*t^8.19 - t^8.23/(g1*g3) - (g3*t^8.23)/(g1^2*g2^3) - (g3*t^8.23)/(g1^2*g2^2*g4) - (g4*t^8.23)/(g1*g2*g3) + (2*g1^3*g2^4*t^8.28)/g3 + 2*g1^2*g2*g3*t^8.28 + (g1^2*g2^3*g3*t^8.28)/g4^2 + (g1^3*g2^5*t^8.28)/(g3*g4) + (2*g1^2*g2^2*g3*t^8.28)/g4 + (2*g1^3*g2^3*g4*t^8.28)/g3 + g1^2*g3*g4*t^8.28 + (g1^3*g2^2*g4^2*t^8.28)/g3 + (g1^5*g2^6*t^8.37)/g3^3 - (g1^4*g2^3*t^8.37)/g3 + (g1^3*g2^2*g3*t^8.37)/g4^2 - (g1^4*g2^4*t^8.37)/(g3*g4) + (g1^3*g2*g3*t^8.37)/g4 + (g1^5*g2^5*g4*t^8.37)/g3^3 + (g3^4*t^8.57)/(g1^12*g2^8) + (g3^4*g4*t^8.57)/(g1^12*g2^9) + (g3^4*g4^2*t^8.57)/(g1^12*g2^10) + (g3^4*g4^3*t^8.57)/(g1^12*g2^11) + (g3^4*g4^4*t^8.57)/(g1^12*g2^12) + (g3^4*t^8.71)/(g1^7*g2^5) + (g3^2*g4*t^8.71)/(g1^6*g2^3) + (g3^4*g4*t^8.71)/(g1^7*g2^6) + (g3^2*g4^2*t^8.71)/(g1^6*g2^4) + (g3^4*g4^2*t^8.71)/(g1^7*g2^7) + (g3^2*g4^3*t^8.71)/(g1^6*g2^5) + (3*g3^2*t^8.8)/(g1^5*g2^3) + (g3^2*t^8.8)/(g1^5*g2^2*g4) + (3*g3^2*g4*t^8.8)/(g1^5*g2^4) + (3*g3^2*g4^2*t^8.8)/(g1^5*g2^5) + (g3^2*g4^3*t^8.8)/(g1^5*g2^6) + (g2*g3^2*t^8.85)/g1 + (g3^4*t^8.85)/(g1^2*g2^2) + (2*g3^2*g4*t^8.85)/g1 + g2^2*g4^2*t^8.85 + (g3^2*g4^2*t^8.85)/(g1*g2) - (g3^2*t^8.89)/(g1^4*g2^4) - (g4*t^8.89)/(g1^3*g2^2) + t^8.92/(g1^6*g2^6) + g1*g2^3*t^8.94 + 2*g3^2*t^8.94 + (g2*g3^2*t^8.94)/g4 + 2*g1*g2^2*g4*t^8.94 + (g3^2*g4*t^8.94)/g2 + g1*g2*g4^2*t^8.94 - (4*t^8.97)/(g1^2*g2^2) - (2*t^8.97)/(g1^2*g2*g4) - (2*g4*t^8.97)/(g1^2*g2^3) - t^4.49/(g1*g2*y) - (g3*t^6.63)/(g1^4*g2^3*y) - (g3*g4*t^6.63)/(g1^4*g2^4*y) + (g3^2*g4*t^7.28)/(g1^6*g2^5*y) - t^7.46/(g1^3*g2^3*y) + (g1*g2*t^7.51)/y + (g3*t^8.12)/(g1^5*g2^4*y) + (g3*g4*t^8.12)/(g1^5*g2^5*y) + (g3*t^8.17)/(g1*y) + (g3*g4*t^8.17)/(g1*g2*y) + (g1^2*g2*t^8.35)/(g3*y) + (g1^2*g2^2*t^8.35)/(g3*g4*y) - (g3^2*t^8.77)/(g1^7*g2^5*y) - (g3^2*g4*t^8.77)/(g1^7*g2^6*y) - (g3^2*g4^2*t^8.77)/(g1^7*g2^7*y) + (g3^2*t^8.82)/(g1^3*g2*y) + (2*g3^2*g4*t^8.82)/(g1^3*g2^2*y) + (g3^2*g4^2*t^8.82)/(g1^3*g2^3*y) + (g2*t^8.91)/(g1*y) + (2*g3^2*t^8.91)/(g1^2*g2^2*y) + (g3^2*t^8.91)/(g1^2*g2*g4*y) + (2*g4*t^8.91)/(g1*y) + (g3^2*g4*t^8.91)/(g1^2*g2^3*y) + (g4^2*t^8.91)/(g1*g2*y) - (t^4.49*y)/(g1*g2) - (g3*t^6.63*y)/(g1^4*g2^3) - (g3*g4*t^6.63*y)/(g1^4*g2^4) + (g3^2*g4*t^7.28*y)/(g1^6*g2^5) - (t^7.46*y)/(g1^3*g2^3) + g1*g2*t^7.51*y + (g3*t^8.12*y)/(g1^5*g2^4) + (g3*g4*t^8.12*y)/(g1^5*g2^5) + (g3*t^8.17*y)/g1 + (g3*g4*t^8.17*y)/(g1*g2) + (g1^2*g2*t^8.35*y)/g3 + (g1^2*g2^2*t^8.35*y)/(g3*g4) - (g3^2*t^8.77*y)/(g1^7*g2^5) - (g3^2*g4*t^8.77*y)/(g1^7*g2^6) - (g3^2*g4^2*t^8.77*y)/(g1^7*g2^7) + (g3^2*t^8.82*y)/(g1^3*g2) + (2*g3^2*g4*t^8.82*y)/(g1^3*g2^2) + (g3^2*g4^2*t^8.82*y)/(g1^3*g2^3) + (g2*t^8.91*y)/g1 + (2*g3^2*t^8.91*y)/(g1^2*g2^2) + (g3^2*t^8.91*y)/(g1^2*g2*g4) + (2*g4*t^8.91*y)/g1 + (g3^2*g4*t^8.91*y)/(g1^2*g2^3) + (g4^2*t^8.91*y)/(g1*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55673 SU2adj1nf3 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{3}$ 0.8165 0.99 0.8247 [X:[], M:[0.7241], q:[0.7674, 0.5085, 0.7499], qb:[0.7499, 0.491, 0.7324], phi:[0.5003]] t^2.17 + 2*t^3. + t^3.67 + 3*t^3.72 + 3*t^3.78 + t^4.34 + 3*t^4.45 + 3*t^4.5 + 3*t^4.55 + 2*t^5.17 + t^5.84 + 3*t^5.9 - t^6. - t^4.5/y - t^4.5*y detail