Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55795 SU2adj1nf3 $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ q_2q_3$ + $ q_3\tilde{q}_1$ + $ \phi_1^2X_1$ 0.5241 0.5971 0.8778 [X:[1.3807], M:[], q:[0.5355, 1.1548, 0.8452], qb:[1.1548, 0.5355, 0.5355], phi:[0.3096]] [X:[[0, 4]], M:[], q:[[0, 3], [0, -1], [0, 1]], qb:[[0, -1], [-1, 6], [1, 0]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_1\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ X_1$, $ q_1q_2$, $ q_1\tilde{q}_1$ $\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_3$ -7 3*t^3.21 + 4*t^4.14 + t^5.07 - 7*t^6. + 6*t^6.43 - 6*t^6.93 + 10*t^7.36 + t^7.86 + 6*t^8.28 + 4*t^8.79 - t^3.93/y - t^3.93*y g1*g2^3*t^3.21 + g2^6*t^3.21 + (g2^9*t^3.21)/g1 + (g1^2*t^4.14)/g2^2 + 2*g2^4*t^4.14 + (g2^10*t^4.14)/g1^2 + g2^2*t^5.07 - 3*t^6. - (g1^2*t^6.)/g2^6 - (g1*t^6.)/g2^3 - (g2^3*t^6.)/g1 - (g2^6*t^6.)/g1^2 + g1^2*g2^6*t^6.43 + g1*g2^9*t^6.43 + 2*g2^12*t^6.43 + (g2^15*t^6.43)/g1 + (g2^18*t^6.43)/g1^2 - (g1^2*t^6.93)/g2^8 - (g1*t^6.93)/g2^5 - (2*t^6.93)/g2^2 - (g2*t^6.93)/g1 - (g2^4*t^6.93)/g1^2 + g1^3*g2*t^7.36 + g1^2*g2^4*t^7.36 + 2*g1*g2^7*t^7.36 + 2*g2^10*t^7.36 + (2*g2^13*t^7.36)/g1 + (g2^16*t^7.36)/g1^2 + (g2^19*t^7.36)/g1^3 + t^7.86/g2^4 + (g1^4*t^8.28)/g2^4 + g1^2*g2^2*t^8.28 + 2*g2^8*t^8.28 + (g2^14*t^8.28)/g1^2 + (g2^20*t^8.28)/g1^4 + t^8.79/g1^2 + (g1^2*t^8.79)/g2^12 + (2*t^8.79)/g2^6 - t^3.93/(g2^2*y) - (t^3.93*y)/g2^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
182 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ + $ M_1M_2$ 0.5241 0.5971 0.8778 [X:[1.3807], M:[0.9289, 1.0711], q:[0.5355, 1.1548], qb:[0.5355, 0.5355], phi:[0.3096]] 3*t^3.21 + 4*t^4.14 + t^5.07 - 7*t^6. - t^3.93/y - t^3.93*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55656 SU2adj1nf3 $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ q_2q_3$ 0.665 0.79 0.8418 [X:[], M:[], q:[0.4, 1.2, 0.8], qb:[0.6667, 0.6667, 0.6667], phi:[0.4]] t^2.4 + 3*t^3.2 + t^3.6 + 3*t^4. + 3*t^4.4 + t^4.8 + 3*t^5.2 + 3*t^5.6 - 9*t^6. - t^4.2/y - t^4.2*y detail {a: 133/200, c: 79/100, q1: 2/5, q2: 6/5, q3: 4/5, qb1: 2/3, qb2: 2/3, qb3: 2/3, phi1: 2/5}