Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55779 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ 0.8897 1.0896 0.8165 [X:[], M:[0.7548, 0.737], q:[0.731, 0.6365, 0.6087], qb:[0.6265, 0.6226, 0.6226], phi:[0.538]] [X:[], M:[[0, 0, -7, -7], [1, -7, -7, -7]], q:[[0, 1, 2, 2], [-1, 0, 7, 7], [1, 0, 0, 0]], qb:[[0, 7, 0, 0], [0, 0, 7, 0], [0, 0, 0, 7]], phi:[[0, -2, -4, -4]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ q_3\tilde{q}_2$, $ q_3\tilde{q}_1$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1q_3$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_1q_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2q_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_3\tilde{q}_3$ . -6 t^2.21 + t^2.26 + t^3.23 + 2*t^3.69 + t^3.71 + t^3.74 + 2*t^3.75 + 2*t^3.78 + t^4.02 + 2*t^4.06 + t^4.07 + t^4.1 + t^4.42 + t^4.48 + t^4.53 + t^5.27 + 2*t^5.31 + t^5.32 + 4*t^5.35 + 2*t^5.36 + t^5.37 + 2*t^5.39 + t^5.4 + t^5.43 + t^5.44 + t^5.49 + 2*t^5.91 - 6*t^6. - t^6.03 - 2*t^6.04 - t^6.05 - t^6.08 + t^6.23 + 2*t^6.27 + t^6.28 + t^6.34 + t^6.46 + t^6.63 + t^6.69 + t^6.74 + t^6.79 + 2*t^6.92 + t^6.93 + t^6.96 + 2*t^6.98 + 2*t^7.01 + 3*t^7.39 + 2*t^7.4 + t^7.41 + 2*t^7.43 + 4*t^7.44 + 2*t^7.45 + 4*t^7.47 + 3*t^7.48 + 3*t^7.49 + 2*t^7.51 + 5*t^7.52 + t^7.53 + 3*t^7.55 + 3*t^7.56 + t^7.58 - t^7.61 + t^7.64 + t^7.65 - 2*t^7.66 + t^7.7 + 2*t^7.71 + t^7.72 + 4*t^7.75 + t^7.76 + 4*t^7.77 + t^7.78 + 4*t^7.8 + 4*t^7.81 + 2*t^7.82 + 4*t^7.84 + 2*t^7.85 + 2*t^7.88 + 2*t^8.12 - 6*t^8.21 - 2*t^8.25 - 3*t^8.26 - t^8.29 - t^8.32 - t^8.41 + t^8.44 - 2*t^8.45 - t^8.46 + 2*t^8.48 + t^8.49 + 2*t^8.54 + 2*t^8.55 + 3*t^8.58 + 2*t^8.59 + 2*t^8.6 + 2*t^8.62 + t^8.63 + t^8.66 + t^8.67 + t^8.72 - t^8.77 + t^8.84 + t^8.9 + t^8.95 + 2*t^8.96 + t^8.97 - t^4.61/y - t^6.83/y - t^6.88/y + t^7.39/y + t^7.48/y - t^7.84/y + t^8.35/y + t^8.4/y + t^8.44/y + t^8.49/y + (2*t^8.91)/y + t^8.92/y + t^8.95/y + (4*t^8.96)/y + t^8.97/y + (2*t^8.99)/y - t^4.61*y - t^6.83*y - t^6.88*y + t^7.39*y + t^7.48*y - t^7.84*y + t^8.35*y + t^8.4*y + t^8.44*y + t^8.49*y + 2*t^8.91*y + t^8.92*y + t^8.95*y + 4*t^8.96*y + t^8.97*y + 2*t^8.99*y (g1*t^2.21)/(g2^7*g3^7*g4^7) + t^2.26/(g3^7*g4^7) + t^3.23/(g2^4*g3^8*g4^8) + g1*g3^7*t^3.69 + g1*g4^7*t^3.69 + g1*g2^7*t^3.71 + g3^7*g4^7*t^3.74 + g2^7*g3^7*t^3.75 + g2^7*g4^7*t^3.75 + (g3^14*g4^7*t^3.78)/g1 + (g3^7*g4^14*t^3.78)/g1 + g1*g2*g3^2*g4^2*t^4.02 + g2*g3^9*g4^2*t^4.06 + g2*g3^2*g4^9*t^4.06 + g2^8*g3^2*g4^2*t^4.07 + (g2*g3^9*g4^9*t^4.1)/g1 + (g1^2*t^4.42)/(g2^14*g3^14*g4^14) + (g1*t^4.48)/(g2^7*g3^14*g4^14) + t^4.53/(g3^14*g4^14) + (g1^2*t^5.27)/(g2^2*g3^4*g4^4) + (g1*g3^3*t^5.31)/(g2^2*g4^4) + (g1*g4^3*t^5.31)/(g2^2*g3^4) + (g1*g2^5*t^5.32)/(g3^4*g4^4) + (g3^10*t^5.35)/(g2^2*g4^4) + (2*g3^3*g4^3*t^5.35)/g2^2 + (g4^10*t^5.35)/(g2^2*g3^4) + (g2^5*g3^3*t^5.36)/g4^4 + (g2^5*g4^3*t^5.36)/g3^4 + (g2^12*t^5.37)/(g3^4*g4^4) + (g3^10*g4^3*t^5.39)/(g1*g2^2) + (g3^3*g4^10*t^5.39)/(g1*g2^2) + (g2^5*g3^3*g4^3*t^5.4)/g1 + (g3^10*g4^10*t^5.43)/(g1^2*g2^2) + (g1*t^5.44)/(g2^11*g3^15*g4^15) + t^5.49/(g2^4*g3^15*g4^15) + (g1^2*t^5.91)/(g2^7*g3^7) + (g1^2*t^5.91)/(g2^7*g4^7) - 4*t^6. - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g3^7 - (g3^7*g4^7*t^6.03)/(g1*g2^7) - (g3^7*t^6.04)/g1 - (g4^7*t^6.04)/g1 - (g2^7*t^6.05)/g1 - (g3^7*g4^7*t^6.08)/g1^2 + (g1^2*t^6.23)/(g2^6*g3^5*g4^5) + (g1*g3^2*t^6.27)/(g2^6*g4^5) + (g1*g4^2*t^6.27)/(g2^6*g3^5) + (g1*g2*t^6.28)/(g3^5*g4^5) + (g2^8*t^6.34)/(g3^5*g4^5) + t^6.46/(g2^8*g3^16*g4^16) + (g1^3*t^6.63)/(g2^21*g3^21*g4^21) + (g1^2*t^6.69)/(g2^14*g3^21*g4^21) + (g1*t^6.74)/(g2^7*g3^21*g4^21) + t^6.79/(g3^21*g4^21) + (g1*t^6.92)/(g2^4*g3*g4^8) + (g1*t^6.92)/(g2^4*g3^8*g4) + (g1*g2^3*t^6.93)/(g3^8*g4^8) + t^6.96/(g2^4*g3*g4) + (g2^3*t^6.98)/(g3*g4^8) + (g2^3*t^6.98)/(g3^8*g4) + (g3^6*t^7.01)/(g1*g2^4*g4) + (g4^6*t^7.01)/(g1*g2^4*g3) + g1^2*g3^14*t^7.39 + g1^2*g3^7*g4^7*t^7.39 + g1^2*g4^14*t^7.39 + g1^2*g2^7*g3^7*t^7.4 + g1^2*g2^7*g4^7*t^7.4 + g1^2*g2^14*t^7.41 + g1*g3^14*g4^7*t^7.43 + g1*g3^7*g4^14*t^7.43 + g1*g2^7*g3^14*t^7.44 + 2*g1*g2^7*g3^7*g4^7*t^7.44 + g1*g2^7*g4^14*t^7.44 + g1*g2^14*g3^7*t^7.45 + g1*g2^14*g4^7*t^7.45 + g3^21*g4^7*t^7.47 + 2*g3^14*g4^14*t^7.47 + g3^7*g4^21*t^7.47 + (g1^3*t^7.48)/(g2^9*g3^11*g4^11) + g2^7*g3^14*g4^7*t^7.48 + g2^7*g3^7*g4^14*t^7.48 + g2^14*g3^14*t^7.49 + g2^14*g3^7*g4^7*t^7.49 + g2^14*g4^14*t^7.49 + (g3^21*g4^14*t^7.51)/g1 + (g3^14*g4^21*t^7.51)/g1 + (g1^2*t^7.52)/(g2^9*g3^4*g4^11) + (g1^2*t^7.52)/(g2^9*g3^11*g4^4) + (g2^7*g3^21*g4^7*t^7.52)/g1 + (g2^7*g3^14*g4^14*t^7.52)/g1 + (g2^7*g3^7*g4^21*t^7.52)/g1 + (g1^2*t^7.53)/(g2^2*g3^11*g4^11) + (g3^28*g4^14*t^7.55)/g1^2 + (g3^21*g4^21*t^7.55)/g1^2 + (g3^14*g4^28*t^7.55)/g1^2 + (g1*g3^3*t^7.56)/(g2^9*g4^11) + (g1*t^7.56)/(g2^9*g3^4*g4^4) + (g1*g4^3*t^7.56)/(g2^9*g3^11) + (g1*g2^5*t^7.58)/(g3^11*g4^11) - t^7.61/(g2^2*g3^4*g4^4) + (g2^12*t^7.64)/(g3^11*g4^11) + (g1^2*t^7.65)/(g2^18*g3^22*g4^22) - (g3^3*t^7.66)/(g1*g2^2*g4^4) - (g4^3*t^7.66)/(g1*g2^2*g3^4) + (g1*t^7.7)/(g2^11*g3^22*g4^22) + g1^2*g2*g3^9*g4^2*t^7.71 + g1^2*g2*g3^2*g4^9*t^7.71 + g1^2*g2^8*g3^2*g4^2*t^7.72 + g1*g2*g3^16*g4^2*t^7.75 + 2*g1*g2*g3^9*g4^9*t^7.75 + g1*g2*g3^2*g4^16*t^7.75 + t^7.76/(g2^4*g3^22*g4^22) + 2*g1*g2^8*g3^9*g4^2*t^7.77 + 2*g1*g2^8*g3^2*g4^9*t^7.77 + g1*g2^15*g3^2*g4^2*t^7.78 + 2*g2*g3^16*g4^9*t^7.8 + 2*g2*g3^9*g4^16*t^7.8 + g2^8*g3^16*g4^2*t^7.81 + 2*g2^8*g3^9*g4^9*t^7.81 + g2^8*g3^2*g4^16*t^7.81 + g2^15*g3^9*g4^2*t^7.82 + g2^15*g3^2*g4^9*t^7.82 + (g2*g3^23*g4^9*t^7.84)/g1 + (2*g2*g3^16*g4^16*t^7.84)/g1 + (g2*g3^9*g4^23*t^7.84)/g1 + (g2^8*g3^16*g4^9*t^7.85)/g1 + (g2^8*g3^9*g4^16*t^7.85)/g1 + (g2*g3^23*g4^16*t^7.88)/g1^2 + (g2*g3^16*g4^23*t^7.88)/g1^2 + (g1^3*t^8.12)/(g2^14*g3^7*g4^14) + (g1^3*t^8.12)/(g2^14*g3^14*g4^7) - (g1*t^8.21)/(g2^7*g3^14) - (g1*t^8.21)/(g2^7*g4^14) - (4*g1*t^8.21)/(g2^7*g3^7*g4^7) - t^8.25/(g2^7*g3^7) - t^8.25/(g2^7*g4^7) - (3*t^8.26)/(g3^7*g4^7) - t^8.29/(g1*g2^7) - (g2^7*t^8.32)/(g1*g3^7*g4^7) - g1*g2^3*g3^6*g4^6*t^8.41 + (g1^3*t^8.44)/(g2^13*g3^12*g4^12) - g2^3*g3^13*g4^6*t^8.45 - g2^3*g3^6*g4^13*t^8.45 - g2^10*g3^6*g4^6*t^8.46 + (g1^2*t^8.48)/(g2^13*g3^5*g4^12) + (g1^2*t^8.48)/(g2^13*g3^12*g4^5) + (2*g1^2*t^8.49)/(g2^6*g3^12*g4^12) - (g2^3*g3^13*g4^13*t^8.49)/g1 + (g1*t^8.54)/(g2^6*g3^5*g4^12) + (g1*t^8.54)/(g2^6*g3^12*g4^5) + (2*g1*g2*t^8.55)/(g3^12*g4^12) + (g3^2*t^8.58)/(g2^6*g4^12) + t^8.58/(g2^6*g3^5*g4^5) + (g4^2*t^8.58)/(g2^6*g3^12) + (g2*t^8.59)/(g3^5*g4^12) + (g2*t^8.59)/(g3^12*g4^5) + (2*g2^8*t^8.6)/(g3^12*g4^12) + (g3^2*t^8.62)/(g1*g2^6*g4^5) + (g4^2*t^8.62)/(g1*g2^6*g3^5) + (g2*t^8.63)/(g1*g3^5*g4^5) + (g3^2*g4^2*t^8.66)/(g1^2*g2^6) + (g1*t^8.67)/(g2^15*g3^23*g4^23) + t^8.72/(g2^8*g3^23*g4^23) - g2^4*g3^8*g4^8*t^8.77 + (g1^4*t^8.84)/(g2^28*g3^28*g4^28) + (g1^3*t^8.9)/(g2^21*g3^28*g4^28) + (g1^2*t^8.95)/(g2^14*g3^28*g4^28) + (g1^3*g3^3*t^8.96)/(g2^2*g4^4) + (g1^3*g4^3*t^8.96)/(g2^2*g3^4) + (g1^3*g2^5*t^8.97)/(g3^4*g4^4) - t^4.61/(g2^2*g3^4*g4^4*y) - (g1*t^6.83)/(g2^9*g3^11*g4^11*y) - t^6.88/(g2^2*g3^11*g4^11*y) + (g2^2*g3^4*g4^4*t^7.39)/y + (g1*t^7.48)/(g2^7*g3^14*g4^14*y) - t^7.84/(g2^6*g3^12*g4^12*y) + (g3^3*g4^3*t^8.35)/(g2^2*y) + (g2^5*g3^3*g4^3*t^8.4)/(g1*y) + (g1*t^8.44)/(g2^11*g3^15*g4^15*y) + t^8.49/(g2^4*g3^15*g4^15*y) + (g1^2*t^8.91)/(g2^7*g3^7*y) + (g1^2*t^8.91)/(g2^7*g4^7*y) + (g1^2*t^8.92)/(g3^7*g4^7*y) + (g1*t^8.95)/(g2^7*y) + (2*g1*t^8.96)/(g3^7*y) + (2*g1*t^8.96)/(g4^7*y) + (g1*g2^7*t^8.97)/(g3^7*g4^7*y) + (g3^7*t^8.99)/(g2^7*y) + (g4^7*t^8.99)/(g2^7*y) - (t^4.61*y)/(g2^2*g3^4*g4^4) - (g1*t^6.83*y)/(g2^9*g3^11*g4^11) - (t^6.88*y)/(g2^2*g3^11*g4^11) + g2^2*g3^4*g4^4*t^7.39*y + (g1*t^7.48*y)/(g2^7*g3^14*g4^14) - (t^7.84*y)/(g2^6*g3^12*g4^12) + (g3^3*g4^3*t^8.35*y)/g2^2 + (g2^5*g3^3*g4^3*t^8.4*y)/g1 + (g1*t^8.44*y)/(g2^11*g3^15*g4^15) + (t^8.49*y)/(g2^4*g3^15*g4^15) + (g1^2*t^8.91*y)/(g2^7*g3^7) + (g1^2*t^8.91*y)/(g2^7*g4^7) + (g1^2*t^8.92*y)/(g3^7*g4^7) + (g1*t^8.95*y)/g2^7 + (2*g1*t^8.96*y)/g3^7 + (2*g1*t^8.96*y)/g4^7 + (g1*g2^7*t^8.97*y)/(g3^7*g4^7) + (g3^7*t^8.99*y)/g2^7 + (g4^7*t^8.99*y)/g2^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55689 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ 0.8908 1.0945 0.8139 [X:[], M:[0.7257, 0.7257], q:[0.7289, 0.6495, 0.6248], qb:[0.6248, 0.6016, 0.6016], phi:[0.5422]] 2*t^2.18 + t^3.25 + t^3.61 + 4*t^3.68 + 3*t^3.75 + 2*t^3.99 + 2*t^4.06 + t^4.14 + 3*t^4.35 + 3*t^5.24 + 4*t^5.31 + 5*t^5.38 + 2*t^5.43 + 2*t^5.45 + t^5.52 + 2*t^5.79 + 6*t^5.86 - 9*t^6. - t^4.63/y - t^4.63*y detail