Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55777 | SU2adj1nf3 | $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ \phi_1q_1\tilde{q}_3$ + $ M_2\tilde{q}_2\tilde{q}_3$ | 0.8353 | 1.0217 | 0.8176 | [X:[], M:[0.7368, 0.7368], q:[0.7544, 0.5088, 0.7544], qb:[0.7544, 0.5088, 0.7544], phi:[0.4912]] | [X:[], M:[[-3, -3, 1, 1], [0, 0, -1, -1]], q:[[1, 1, 0, -1], [2, 2, -1, 0], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[-1, -1, 0, 0]]] | 4 | {a: 7237/8664, c: 2213/2166, M1: 14/19, M2: 14/19, q1: 43/57, q2: 29/57, q3: 43/57, qb1: 43/57, qb2: 29/57, qb3: 43/57, phi1: 28/57} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_3$, $ M_1M_2$, $ M_2^2$, $ M_1^2$, $ q_3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ q_1\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_2^2$, $ q_1q_3$, $ q_3\tilde{q}_3$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1^4$ | $M_2q_2q_3$, $ M_2q_2\tilde{q}_1$, $ M_2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_3^2$ | 3 | 2*t^2.21 + t^2.95 + t^3.05 + 6*t^3.79 + 3*t^4.42 + 9*t^4.53 + 2*t^5.16 + 2*t^5.26 + t^5.89 + 3*t^6. + t^6.11 + 4*t^6.63 + 8*t^6.74 + 6*t^6.84 + 3*t^7.37 + 3*t^7.47 + 21*t^7.58 + 2*t^8.11 + 32*t^8.32 + 6*t^8.84 + 7*t^8.95 - t^4.47/y - (2*t^6.68)/y + t^7.53/y + (2*t^8.16)/y + (4*t^8.26)/y - (3*t^8.89)/y - t^4.47*y - 2*t^6.68*y + t^7.53*y + 2*t^8.16*y + 4*t^8.26*y - 3*t^8.89*y | t^2.21/(g3*g4) + (g3*g4*t^2.21)/(g1^3*g2^3) + t^2.95/(g1^2*g2^2) + g1^2*g2^2*t^3.05 + (g1^3*g2^2*t^3.79)/g3 + (g1^2*g2^3*t^3.79)/g3 + g1*g3*t^3.79 + g2*g3*t^3.79 + (g1*g2*g3*t^3.79)/g4 + (g1^2*g2^2*g4*t^3.79)/g3 + t^4.42/(g1^3*g2^3) + t^4.42/(g3^2*g4^2) + (g3^2*g4^2*t^4.42)/(g1^6*g2^6) + 3*g1*g2*t^4.53 + (g1^3*g2^3*t^4.53)/g3^2 + (g3^2*t^4.53)/(g1*g2) + (g1^2*g2*t^4.53)/g4 + (g1*g2^2*t^4.53)/g4 + g1*g4*t^4.53 + g2*g4*t^4.53 + t^5.16/(g1^2*g2^2*g3*g4) + (g3*g4*t^5.16)/(g1^5*g2^5) + (g1^2*g2^2*t^5.26)/(g3*g4) + (g3*g4*t^5.26)/(g1*g2) + t^5.89/(g1^4*g2^4) - 3*t^6. + (g1*g2*t^6.)/g4^2 + (g1^3*g2^2*t^6.)/(g3^2*g4) + (g1^2*g2^3*t^6.)/(g3^2*g4) + (g3^2*g4*t^6.)/(g1^2*g2^3) + (g3^2*g4*t^6.)/(g1^3*g2^2) + (g4^2*t^6.)/(g1*g2) + g1^4*g2^4*t^6.11 + t^6.63/(g3^3*g4^3) + t^6.63/(g1^3*g2^3*g3*g4) + (g3*g4*t^6.63)/(g1^6*g2^6) + (g3^3*g4^3*t^6.63)/(g1^9*g2^9) + (g1^2*g2*t^6.74)/(g3*g4^2) + (g1*g2^2*t^6.74)/(g3*g4^2) + (g1^3*g2^3*t^6.74)/(g3^3*g4) + (g1*g2*t^6.74)/(g3*g4) + (g3*g4*t^6.74)/(g1^2*g2^2) + (g3^3*g4*t^6.74)/(g1^4*g2^4) + (g3*g4^2*t^6.74)/(g1^2*g2^3) + (g3*g4^2*t^6.74)/(g1^3*g2^2) + (g1^5*g2^4*t^6.84)/g3 + (g1^4*g2^5*t^6.84)/g3 + g1^3*g2^2*g3*t^6.84 + g1^2*g2^3*g3*t^6.84 + (g1^3*g2^3*g3*t^6.84)/g4 + (g1^4*g2^4*g4*t^6.84)/g3 + t^7.37/(g1^5*g2^5) + t^7.37/(g1^2*g2^2*g3^2*g4^2) + (g3^2*g4^2*t^7.37)/(g1^8*g2^8) + t^7.47/(g1*g2) + (g1^2*g2^2*t^7.47)/(g3^2*g4^2) + (g3^2*g4^2*t^7.47)/(g1^4*g2^4) + g1^4*g2^2*t^7.58 + 3*g1^3*g2^3*t^7.58 + g1^2*g2^4*t^7.58 + (g1^6*g2^4*t^7.58)/g3^2 + (g1^5*g2^5*t^7.58)/g3^2 + (g1^4*g2^6*t^7.58)/g3^2 + g1^2*g3^2*t^7.58 + g1*g2*g3^2*t^7.58 + g2^2*g3^2*t^7.58 + (g1^2*g2^2*g3^2*t^7.58)/g4^2 + (g1^4*g2^3*t^7.58)/g4 + (g1^3*g2^4*t^7.58)/g4 + (g1^2*g2*g3^2*t^7.58)/g4 + (g1*g2^2*g3^2*t^7.58)/g4 + g1^3*g2^2*g4*t^7.58 + g1^2*g2^3*g4*t^7.58 + (g1^5*g2^4*g4*t^7.58)/g3^2 + (g1^4*g2^5*g4*t^7.58)/g3^2 + (g1^4*g2^4*g4^2*t^7.58)/g3^2 + t^8.11/(g1^4*g2^4*g3*g4) + (g3*g4*t^8.11)/(g1^7*g2^7) + (g1*g2*t^8.21)/(g3*g4^3) + (g1^3*g2^2*t^8.21)/(g3^3*g4^2) + (g1^2*g2^3*t^8.21)/(g3^3*g4^2) - (3*t^8.21)/(g3*g4) - (3*g3*g4*t^8.21)/(g1^3*g2^3) + (g3^3*g4^2*t^8.21)/(g1^5*g2^6) + (g3^3*g4^2*t^8.21)/(g1^6*g2^5) + (g3*g4^3*t^8.21)/(g1^4*g2^4) + (g1^6*g2^5*t^8.32)/g3^3 + (g1^5*g2^6*t^8.32)/g3^3 + (2*g1^4*g2^3*t^8.32)/g3 + (2*g1^3*g2^4*t^8.32)/g3 + 2*g1^2*g2*g3*t^8.32 + 2*g1*g2^2*g3*t^8.32 + (g3^3*t^8.32)/g1 + (g3^3*t^8.32)/g2 + (g1^3*g2^2*g3*t^8.32)/g4^2 + (g1^2*g2^3*g3*t^8.32)/g4^2 + (g1^5*g2^3*t^8.32)/(g3*g4) + (g1^4*g2^4*t^8.32)/(g3*g4) + (g1^3*g2^5*t^8.32)/(g3*g4) + (g1^3*g2*g3*t^8.32)/g4 + (2*g1^2*g2^2*g3*t^8.32)/g4 + (g1*g2^3*g3*t^8.32)/g4 + (g3^3*t^8.32)/g4 + (g1^5*g2^5*g4*t^8.32)/g3^3 + (g1^4*g2^2*g4*t^8.32)/g3 + (2*g1^3*g2^3*g4*t^8.32)/g3 + (g1^2*g2^4*g4*t^8.32)/g3 + g1^2*g3*g4*t^8.32 + g1*g2*g3*g4*t^8.32 + g2^2*g3*g4*t^8.32 + (g1^3*g2^2*g4^2*t^8.32)/g3 + (g1^2*g2^3*g4^2*t^8.32)/g3 + (2*t^8.84)/(g1^6*g2^6) + t^8.84/(g3^4*g4^4) + t^8.84/(g1^3*g2^3*g3^2*g4^2) + (g3^2*g4^2*t^8.84)/(g1^9*g2^9) + (g3^4*g4^4*t^8.84)/(g1^12*g2^12) - t^8.95/(g1^2*g2^2) + (g1^2*g2*t^8.95)/(g3^2*g4^3) + (g1*g2^2*t^8.95)/(g3^2*g4^3) + (g1^3*g2^3*t^8.95)/(g3^4*g4^2) + (g1*g2*t^8.95)/(g3^2*g4^2) + (g3^2*g4^2*t^8.95)/(g1^5*g2^5) + (g3^4*g4^2*t^8.95)/(g1^7*g2^7) + (g3^2*g4^3*t^8.95)/(g1^5*g2^6) + (g3^2*g4^3*t^8.95)/(g1^6*g2^5) - t^4.47/(g1*g2*y) - t^6.68/(g1*g2*g3*g4*y) - (g3*g4*t^6.68)/(g1^4*g2^4*y) + (g1*g2*t^7.53)/y + t^8.16/(g1^2*g2^2*g3*g4*y) + (g3*g4*t^8.16)/(g1^5*g2^5*y) + (2*g1^2*g2^2*t^8.26)/(g3*g4*y) + (2*g3*g4*t^8.26)/(g1*g2*y) - t^8.89/(g1^4*g2^4*y) - t^8.89/(g1*g2*g3^2*g4^2*y) - (g3^2*g4^2*t^8.89)/(g1^7*g2^7*y) - (t^4.47*y)/(g1*g2) - (t^6.68*y)/(g1*g2*g3*g4) - (g3*g4*t^6.68*y)/(g1^4*g2^4) + g1*g2*t^7.53*y + (t^8.16*y)/(g1^2*g2^2*g3*g4) + (g3*g4*t^8.16*y)/(g1^5*g2^5) + (2*g1^2*g2^2*t^8.26*y)/(g3*g4) + (2*g3*g4*t^8.26*y)/(g1*g2) - (t^8.89*y)/(g1^4*g2^4) - (t^8.89*y)/(g1*g2*g3^2*g4^2) - (g3^2*g4^2*t^8.89*y)/(g1^7*g2^7) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55673 | SU2adj1nf3 | $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ \phi_1q_1\tilde{q}_3$ | 0.8165 | 0.99 | 0.8247 | [X:[], M:[0.7241], q:[0.7674, 0.5085, 0.7499], qb:[0.7499, 0.491, 0.7324], phi:[0.5003]] | t^2.17 + 2*t^3. + t^3.67 + 3*t^3.72 + 3*t^3.78 + t^4.34 + 3*t^4.45 + 3*t^4.5 + 3*t^4.55 + 2*t^5.17 + t^5.84 + 3*t^5.9 - t^6. - t^4.5/y - t^4.5*y | detail |