Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55776 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ q_1q_2$ + $ \phi_1q_3^2$ 0.6584 0.7801 0.844 [X:[], M:[1.1579], q:[0.7895, 1.2105, 0.7895], qb:[0.5088, 0.5088, 0.5088], phi:[0.4211]] [X:[], M:[[4, 4, 4]], q:[[1, 1, 1], [-1, -1, -1], [1, 1, 1]], qb:[[7, 0, 0], [0, 7, 0], [0, 0, 7]], phi:[[-2, -2, -2]]] 3 {a: 3803/5776, c: 2253/2888, M1: 22/19, q1: 15/19, q2: 23/19, q3: 15/19, qb1: 29/57, qb2: 29/57, qb3: 29/57, phi1: 8/19}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\tilde{q}_1\tilde{q}_2$, $ M_1$, $ q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$ $q_2q_3$ -9 3*t^3.05 + t^3.47 + 3*t^3.89 + 6*t^4.32 - 9*t^6. + 6*t^6.11 - 3*t^6.42 + 3*t^6.53 - 3*t^6.84 + 9*t^6.95 - 8*t^7.26 + 18*t^7.37 + 6*t^7.79 + 10*t^8.21 + 12*t^8.63 + 6*t^8.95 - t^4.26/y - t^4.26*y g1^7*g2^7*t^3.05 + g1^7*g3^7*t^3.05 + g2^7*g3^7*t^3.05 + g1^4*g2^4*g3^4*t^3.47 + g1^8*g2*g3*t^3.89 + g1*g2^8*g3*t^3.89 + g1*g2*g3^8*t^3.89 + (g1^12*t^4.32)/(g2^2*g3^2) + (g1^5*g2^5*t^4.32)/g3^2 + (g2^12*t^4.32)/(g1^2*g3^2) + (g1^5*g3^5*t^4.32)/g2^2 + (g2^5*g3^5*t^4.32)/g1^2 + (g3^12*t^4.32)/(g1^2*g2^2) - 3*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.)/g3^7 - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g1^7 - (g3^7*t^6.)/g2^7 + g1^14*g2^14*t^6.11 + g1^14*g2^7*g3^7*t^6.11 + g1^7*g2^14*g3^7*t^6.11 + g1^14*g3^14*t^6.11 + g1^7*g2^7*g3^14*t^6.11 + g2^14*g3^14*t^6.11 - (g1^4*t^6.42)/(g2^3*g3^3) - (g2^4*t^6.42)/(g1^3*g3^3) - (g3^4*t^6.42)/(g1^3*g2^3) + g1^11*g2^11*g3^4*t^6.53 + g1^11*g2^4*g3^11*t^6.53 + g1^4*g2^11*g3^11*t^6.53 - (g1*g2*t^6.84)/g3^6 - (g1*g3*t^6.84)/g2^6 - (g2*g3*t^6.84)/g1^6 + g1^15*g2^8*g3*t^6.95 + g1^8*g2^15*g3*t^6.95 + g1^15*g2*g3^8*t^6.95 + 3*g1^8*g2^8*g3^8*t^6.95 + g1*g2^15*g3^8*t^6.95 + g1^8*g2*g3^15*t^6.95 + g1*g2^8*g3^15*t^6.95 - (g1^5*t^7.26)/(g2^2*g3^9) - (g2^5*t^7.26)/(g1^2*g3^9) - (g1^5*t^7.26)/(g2^9*g3^2) - (2*t^7.26)/(g1^2*g2^2*g3^2) - (g2^5*t^7.26)/(g1^9*g3^2) - (g3^5*t^7.26)/(g1^2*g2^9) - (g3^5*t^7.26)/(g1^9*g2^2) + (g1^19*g2^5*t^7.37)/g3^2 + (g1^12*g2^12*t^7.37)/g3^2 + (g1^5*g2^19*t^7.37)/g3^2 + (g1^19*g3^5*t^7.37)/g2^2 + 3*g1^12*g2^5*g3^5*t^7.37 + 3*g1^5*g2^12*g3^5*t^7.37 + (g2^19*g3^5*t^7.37)/g1^2 + (g1^12*g3^12*t^7.37)/g2^2 + 3*g1^5*g2^5*g3^12*t^7.37 + (g2^12*g3^12*t^7.37)/g1^2 + (g1^5*g3^19*t^7.37)/g2^2 + (g2^5*g3^19*t^7.37)/g1^2 + g1^16*g2^2*g3^2*t^7.79 + g1^9*g2^9*g3^2*t^7.79 + g1^2*g2^16*g3^2*t^7.79 + g1^9*g2^2*g3^9*t^7.79 + g1^2*g2^9*g3^9*t^7.79 + g1^2*g2^2*g3^16*t^7.79 + (g1^20*t^8.21)/(g2*g3) + (g1^13*g2^6*t^8.21)/g3 + (g1^6*g2^13*t^8.21)/g3 + (g2^20*t^8.21)/(g1*g3) + (g1^13*g3^6*t^8.21)/g2 + g1^6*g2^6*g3^6*t^8.21 + (g2^13*g3^6*t^8.21)/g1 + (g1^6*g3^13*t^8.21)/g2 + (g2^6*g3^13*t^8.21)/g1 + (g3^20*t^8.21)/(g1*g2) + (g1^24*t^8.63)/(g2^4*g3^4) + (g1^17*g2^3*t^8.63)/g3^4 + (g1^10*g2^10*t^8.63)/g3^4 + (g1^3*g2^17*t^8.63)/g3^4 + (g2^24*t^8.63)/(g1^4*g3^4) + (g1^17*g3^3*t^8.63)/g2^4 + (g2^17*g3^3*t^8.63)/g1^4 + (g1^10*g3^10*t^8.63)/g2^4 + (g2^10*g3^10*t^8.63)/g1^4 + (g1^3*g3^17*t^8.63)/g2^4 + (g2^3*g3^17*t^8.63)/g1^4 + (g3^24*t^8.63)/(g1^4*g2^4) + t^8.95/g1^14 + t^8.95/g2^14 + t^8.95/(g1^7*g2^7) + t^8.95/g3^14 + t^8.95/(g1^7*g3^7) + t^8.95/(g2^7*g3^7) - t^4.26/(g1^2*g2^2*g3^2*y) - (t^4.26*y)/(g1^2*g2^2*g3^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1\phi_1^2$ 0.6584 0.7801 0.844 [X:[], M:[1.1579], q:[0.7895, 0.5088], qb:[0.5088, 0.5088], phi:[0.4211]] 3*t^3.05 + t^3.47 + 3*t^3.89 + 6*t^4.32 - 9*t^6. - t^4.26/y - t^4.26*y detail {a: 3803/5776, c: 2253/2888, M1: 22/19, q1: 15/19, q2: 29/57, qb1: 29/57, qb2: 29/57, phi1: 8/19}


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55669 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ q_1q_2$ 0.7003 0.8367 0.837 [X:[], M:[1.0907], q:[0.7727, 1.2273, 0.5454], qb:[0.5454, 0.5454, 0.5454], phi:[0.4546]] 7*t^3.27 + 10*t^4.64 - 16*t^6. - t^4.36/y - t^4.36*y detail