Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55773 SU2adj1nf3 $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ + $ M_1^2$ 0.8475 1.0447 0.8112 [X:[], M:[1.0, 0.7327], q:[0.5, 0.5, 0.7112], qb:[0.7112, 0.6337, 0.6337], phi:[0.5776]] [X:[], M:[[0, 0, 0, 0], [0, 0, -3, -3]], q:[[-1, 0, 0, 0], [1, 0, 0, 0], [0, -1, 1, 1]], qb:[[0, 1, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]], phi:[[0, 0, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ q_1\tilde{q}_2$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ M_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_2\phi_1^2$, $ M_2q_1\tilde{q}_1$ . -8 t^2.2 + t^3. + 4*t^3.4 + t^3.47 + 4*t^3.63 + 4*t^4.03 + t^4.27 + t^4.4 + 3*t^4.73 + 4*t^5.13 + t^5.2 + 3*t^5.53 + t^5.66 + 4*t^5.83 - 8*t^6. + 2*t^6.47 + t^6.59 + 9*t^6.8 + 4*t^6.87 + 4*t^6.93 + 16*t^7.03 + 7*t^7.27 + t^7.4 + 12*t^7.44 + 12*t^7.67 - t^7.73 + t^7.86 + 4*t^8.03 + 6*t^8.07 + 8*t^8.13 - 2*t^8.2 + 8*t^8.37 + 10*t^8.53 + 4*t^8.6 + 2*t^8.66 + 12*t^8.77 + t^8.79 + 8*t^8.94 - t^4.73/y - t^6.93/y + t^7.27/y + t^8.53/y + (4*t^8.6)/y + t^8.66/y + (4*t^8.83)/y - t^4.73*y - t^6.93*y + t^7.27*y + t^8.53*y + 4*t^8.6*y + t^8.66*y + 4*t^8.83*y t^2.2/(g3^3*g4^3) + t^3. + (g3^3*t^3.4)/g1 + g1*g3^3*t^3.4 + (g4^3*t^3.4)/g1 + g1*g4^3*t^3.4 + t^3.47/(g3^2*g4^2) + (g2*t^3.63)/g1 + g1*g2*t^3.63 + (g3*g4*t^3.63)/(g1*g2) + (g1*g3*g4*t^3.63)/g2 + g2*g3^3*t^4.03 + (g3^4*g4*t^4.03)/g2 + g2*g4^3*t^4.03 + (g3*g4^4*t^4.03)/g2 + g3*g4*t^4.27 + t^4.4/(g3^6*g4^6) + t^4.73/(g3*g4) + t^4.73/(g1^2*g3*g4) + (g1^2*t^4.73)/(g3*g4) + (g3^2*t^5.13)/(g1*g4) + (g1*g3^2*t^5.13)/g4 + (g4^2*t^5.13)/(g1*g3) + (g1*g4^2*t^5.13)/g3 + t^5.2/(g3^3*g4^3) + (g3^5*t^5.53)/g4 + g3^2*g4^2*t^5.53 + (g4^5*t^5.53)/g3 + t^5.66/(g3^5*g4^5) + (g2*t^5.83)/(g1*g3^3*g4^3) + (g1*g2*t^5.83)/(g3^3*g4^3) + t^5.83/(g1*g2*g3^2*g4^2) + (g1*t^5.83)/(g2*g3^2*g4^2) - 4*t^6. - t^6./g1^2 - g1^2*t^6. - (g3^3*t^6.)/g4^3 - (g4^3*t^6.)/g3^3 + (2*t^6.47)/(g3^2*g4^2) + t^6.59/(g3^9*g4^9) + g3^6*t^6.8 + (g3^6*t^6.8)/g1^2 + g1^2*g3^6*t^6.8 + g3^3*g4^3*t^6.8 + (g3^3*g4^3*t^6.8)/g1^2 + g1^2*g3^3*g4^3*t^6.8 + g4^6*t^6.8 + (g4^6*t^6.8)/g1^2 + g1^2*g4^6*t^6.8 + (g3*t^6.87)/(g1*g4^2) + (g1*g3*t^6.87)/g4^2 + (g4*t^6.87)/(g1*g3^2) + (g1*g4*t^6.87)/g3^2 + (2*t^6.93)/(g3^4*g4^4) + t^6.93/(g1^2*g3^4*g4^4) + (g1^2*t^6.93)/(g3^4*g4^4) + 2*g2*g3^3*t^7.03 + (g2*g3^3*t^7.03)/g1^2 + g1^2*g2*g3^3*t^7.03 + (2*g3^4*g4*t^7.03)/g2 + (g3^4*g4*t^7.03)/(g1^2*g2) + (g1^2*g3^4*g4*t^7.03)/g2 + 2*g2*g4^3*t^7.03 + (g2*g4^3*t^7.03)/g1^2 + g1^2*g2*g4^3*t^7.03 + (2*g3*g4^4*t^7.03)/g2 + (g3*g4^4*t^7.03)/(g1^2*g2) + (g1^2*g3*g4^4*t^7.03)/g2 + g2^2*t^7.27 + (g2^2*t^7.27)/g1^2 + g1^2*g2^2*t^7.27 + g3*g4*t^7.27 + (g3^2*g4^2*t^7.27)/g2^2 + (g3^2*g4^2*t^7.27)/(g1^2*g2^2) + (g1^2*g3^2*g4^2*t^7.27)/g2^2 + t^7.4/(g3^6*g4^6) + (g2*g3^6*t^7.44)/g1 + g1*g2*g3^6*t^7.44 + (g3^7*g4*t^7.44)/(g1*g2) + (g1*g3^7*g4*t^7.44)/g2 + (g2*g3^3*g4^3*t^7.44)/g1 + g1*g2*g3^3*g4^3*t^7.44 + (g3^4*g4^4*t^7.44)/(g1*g2) + (g1*g3^4*g4^4*t^7.44)/g2 + (g2*g4^6*t^7.44)/g1 + g1*g2*g4^6*t^7.44 + (g3*g4^7*t^7.44)/(g1*g2) + (g1*g3*g4^7*t^7.44)/g2 + (g2^2*g3^3*t^7.67)/g1 + g1*g2^2*g3^3*t^7.67 + (g3^4*g4*t^7.67)/g1 + g1*g3^4*g4*t^7.67 + (g3^5*g4^2*t^7.67)/(g1*g2^2) + (g1*g3^5*g4^2*t^7.67)/g2^2 + (g2^2*g4^3*t^7.67)/g1 + g1*g2^2*g4^3*t^7.67 + (g3*g4^4*t^7.67)/g1 + g1*g3*g4^4*t^7.67 + (g3^2*g4^5*t^7.67)/(g1*g2^2) + (g1*g3^2*g4^5*t^7.67)/g2^2 - t^7.73/(g3*g4) + t^7.86/(g3^8*g4^8) + (g2*t^8.03)/(g1*g3^6*g4^6) + (g1*g2*t^8.03)/(g3^6*g4^6) + t^8.03/(g1*g2*g3^5*g4^5) + (g1*t^8.03)/(g2*g3^5*g4^5) + g2^2*g3^6*t^8.07 + (g3^8*g4^2*t^8.07)/g2^2 + g2^2*g3^3*g4^3*t^8.07 + (g3^5*g4^5*t^8.07)/g2^2 + g2^2*g4^6*t^8.07 + (g3^2*g4^8*t^8.07)/g2^2 + (g3^2*t^8.13)/(g1^3*g4) + (g3^2*t^8.13)/(g1*g4) + (g1*g3^2*t^8.13)/g4 + (g1^3*g3^2*t^8.13)/g4 + (g4^2*t^8.13)/(g1^3*g3) + (g4^2*t^8.13)/(g1*g3) + (g1*g4^2*t^8.13)/g3 + (g1^3*g4^2*t^8.13)/g3 - (2*t^8.2)/(g3^3*g4^3) + t^8.37/(g1^3*g2) + t^8.37/(g1*g2) + (g1*t^8.37)/g2 + (g1^3*t^8.37)/g2 + (g2*t^8.37)/(g1^3*g3*g4) + (g2*t^8.37)/(g1*g3*g4) + (g1*g2*t^8.37)/(g3*g4) + (g1^3*g2*t^8.37)/(g3*g4) + (2*g3^5*t^8.53)/g4 + (g3^5*t^8.53)/(g1^2*g4) + (g1^2*g3^5*t^8.53)/g4 - g2^2*g3*g4*t^8.53 + 2*g3^2*g4^2*t^8.53 + (g3^2*g4^2*t^8.53)/g1^2 + g1^2*g3^2*g4^2*t^8.53 - (g3^3*g4^3*t^8.53)/g2^2 + (2*g4^5*t^8.53)/g3 + (g4^5*t^8.53)/(g1^2*g3) + (g1^2*g4^5*t^8.53)/g3 + t^8.6/(g1*g3^3) + (g1*t^8.6)/g3^3 + t^8.6/(g1*g4^3) + (g1*t^8.6)/g4^3 + (2*t^8.66)/(g3^5*g4^5) + (g3^3*t^8.77)/g2 + (g3^3*t^8.77)/(g1^2*g2) + (g1^2*g3^3*t^8.77)/g2 + (g2*g3^2*t^8.77)/g4 + (g2*g3^2*t^8.77)/(g1^2*g4) + (g1^2*g2*g3^2*t^8.77)/g4 + (g2*g4^2*t^8.77)/g3 + (g2*g4^2*t^8.77)/(g1^2*g3) + (g1^2*g2*g4^2*t^8.77)/g3 + (g4^3*t^8.77)/g2 + (g4^3*t^8.77)/(g1^2*g2) + (g1^2*g4^3*t^8.77)/g2 + t^8.79/(g3^12*g4^12) + (g3^8*t^8.94)/(g1*g4) + (g1*g3^8*t^8.94)/g4 + (g3^5*g4^2*t^8.94)/g1 + g1*g3^5*g4^2*t^8.94 + (g3^2*g4^5*t^8.94)/g1 + g1*g3^2*g4^5*t^8.94 + (g4^8*t^8.94)/(g1*g3) + (g1*g4^8*t^8.94)/g3 - t^4.73/(g3*g4*y) - t^6.93/(g3^4*g4^4*y) + (g3*g4*t^7.27)/y + (g3^2*g4^2*t^8.53)/y + t^8.6/(g1*g3^3*y) + (g1*t^8.6)/(g3^3*y) + t^8.6/(g1*g4^3*y) + (g1*t^8.6)/(g4^3*y) + t^8.66/(g3^5*g4^5*y) + (g2*t^8.83)/(g1*g3^3*g4^3*y) + (g1*g2*t^8.83)/(g3^3*g4^3*y) + t^8.83/(g1*g2*g3^2*g4^2*y) + (g1*t^8.83)/(g2*g3^2*g4^2*y) - (t^4.73*y)/(g3*g4) - (t^6.93*y)/(g3^4*g4^4) + g3*g4*t^7.27*y + g3^2*g4^2*t^8.53*y + (t^8.6*y)/(g1*g3^3) + (g1*t^8.6*y)/g3^3 + (t^8.6*y)/(g1*g4^3) + (g1*t^8.6*y)/g4^3 + (t^8.66*y)/(g3^5*g4^5) + (g2*t^8.83*y)/(g1*g3^3*g4^3) + (g1*g2*t^8.83*y)/(g3^3*g4^3) + (t^8.83*y)/(g1*g2*g3^2*g4^2) + (g1*t^8.83*y)/(g2*g3^2*g4^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55679 SU2adj1nf3 $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ 0.8762 1.0664 0.8217 [X:[], M:[0.7818, 0.7818], q:[0.6091, 0.6091, 0.7394], qb:[0.7394, 0.6091, 0.6091], phi:[0.5212]] 2*t^2.35 + t^3.13 + 4*t^3.65 + 8*t^4.05 + t^4.44 + 3*t^4.69 + 10*t^5.22 + 2*t^5.47 - 9*t^6. - t^4.56/y - t^4.56*y detail