Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55754 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ 0.9107 1.1319 0.8046 [X:[], M:[0.7425, 0.6687, 0.7425], q:[0.7308, 0.6288, 0.6288], qb:[0.6005, 0.6288, 0.6288], phi:[0.5384]] [X:[], M:[[-7, -7, 0, 0, 0], [-1, -1, -8, -1, -1], [0, 0, 0, -7, -7]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ M_3$, $ \phi_1^2$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_2^2$, $ q_1q_2$, $ q_1\tilde{q}_2$, $ M_2M_3$, $ M_1M_2$, $ M_1^2$, $ M_3^2$, $ M_1M_3$, $ \phi_1\tilde{q}_1^2$, $ M_2\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$ . -9 t^2.01 + 2*t^2.23 + t^3.23 + 4*t^3.69 + 4*t^3.77 + t^4.01 + 4*t^4.08 + 2*t^4.23 + 3*t^4.45 + t^5.22 + t^5.24 + 4*t^5.3 + 10*t^5.39 + 2*t^5.46 + 4*t^5.69 + 4*t^5.78 + 4*t^5.92 - 9*t^6. + t^6.02 + 2*t^6.24 + 4*t^6.31 - t^6.39 + 4*t^6.46 + 4*t^6.68 + 4*t^6.92 + 4*t^7. + t^7.24 + 4*t^7.31 + 10*t^7.38 + 10*t^7.39 + 2*t^7.45 + 14*t^7.46 + 4*t^7.53 + 9*t^7.55 + 4*t^7.62 + 3*t^7.69 + 10*t^7.77 + 4*t^7.78 + 12*t^7.85 + 4*t^7.92 - t^7.99 - 9*t^8.01 + t^8.02 - 4*t^8.07 + 4*t^8.14 - 12*t^8.23 + 2*t^8.25 - t^8.38 + t^8.45 - 4*t^8.46 + 4*t^8.47 + 8*t^8.53 + 8*t^8.62 + 6*t^8.69 - t^8.77 + 9*t^8.91 + 4*t^8.92 + 14*t^8.99 - t^4.62/y - t^6.62/y - (2*t^6.84)/y + (2*t^7.23)/y + t^7.38/y + t^7.45/y - t^7.85/y + t^8.24/y + (2*t^8.39)/y + (2*t^8.46)/y + t^8.61/y - t^8.63/y + (4*t^8.69)/y + (4*t^8.78)/y - (2*t^8.85)/y + (8*t^8.92)/y - t^4.62*y - t^6.62*y - 2*t^6.84*y + 2*t^7.23*y + t^7.38*y + t^7.45*y - t^7.85*y + t^8.24*y + 2*t^8.39*y + 2*t^8.46*y + t^8.61*y - t^8.63*y + 4*t^8.69*y + 4*t^8.78*y - 2*t^8.85*y + 8*t^8.92*y t^2.01/(g1*g2*g3^8*g4*g5) + t^2.23/(g1^7*g2^7) + t^2.23/(g4^7*g5^7) + t^3.23/(g1^4*g2^4*g3^4*g4^4*g5^4) + g1^7*g3^7*t^3.69 + g2^7*g3^7*t^3.69 + g3^7*g4^7*t^3.69 + g3^7*g5^7*t^3.69 + g1^7*g4^7*t^3.77 + g2^7*g4^7*t^3.77 + g1^7*g5^7*t^3.77 + g2^7*g5^7*t^3.77 + t^4.01/(g1^2*g2^2*g3^16*g4^2*g5^2) + g1^8*g2*g3*g4*g5*t^4.08 + g1*g2^8*g3*g4*g5*t^4.08 + g1*g2*g3*g4^8*g5*t^4.08 + g1*g2*g3*g4*g5^8*t^4.08 + t^4.23/(g1*g2*g3^8*g4^8*g5^8) + t^4.23/(g1^8*g2^8*g3^8*g4*g5) + t^4.45/(g1^14*g2^14) + t^4.45/(g4^14*g5^14) + t^4.45/(g1^7*g2^7*g4^7*g5^7) + (g3^12*t^5.22)/(g1^2*g2^2*g4^2*g5^2) + t^5.24/(g1^5*g2^5*g3^12*g4^5*g5^5) + (g1^5*g3^5*t^5.3)/(g2^2*g4^2*g5^2) + (g2^5*g3^5*t^5.3)/(g1^2*g4^2*g5^2) + (g3^5*g4^5*t^5.3)/(g1^2*g2^2*g5^2) + (g3^5*g5^5*t^5.3)/(g1^2*g2^2*g4^2) + (g1^12*t^5.39)/(g2^2*g3^2*g4^2*g5^2) + (g1^5*g2^5*t^5.39)/(g3^2*g4^2*g5^2) + (g2^12*t^5.39)/(g1^2*g3^2*g4^2*g5^2) + (g1^5*g4^5*t^5.39)/(g2^2*g3^2*g5^2) + (g2^5*g4^5*t^5.39)/(g1^2*g3^2*g5^2) + (g4^12*t^5.39)/(g1^2*g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.39)/(g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.39)/(g1^2*g3^2*g4^2) + (g4^5*g5^5*t^5.39)/(g1^2*g2^2*g3^2) + (g5^12*t^5.39)/(g1^2*g2^2*g3^2*g4^2) + t^5.46/(g1^4*g2^4*g3^4*g4^11*g5^11) + t^5.46/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g1^6*t^5.69)/(g2*g3*g4*g5) + (g2^6*t^5.69)/(g1*g3*g4*g5) + (g4^6*t^5.69)/(g1*g2*g3*g5) + (g5^6*t^5.69)/(g1*g2*g3*g4) + (g1^6*g4^6*t^5.78)/(g2*g3^8*g5) + (g2^6*g4^6*t^5.78)/(g1*g3^8*g5) + (g1^6*g5^6*t^5.78)/(g2*g3^8*g4) + (g2^6*g5^6*t^5.78)/(g1*g3^8*g4) + (g3^7*g4^7*t^5.92)/(g1^7*g2^7) + (g1^7*g3^7*t^5.92)/(g4^7*g5^7) + (g2^7*g3^7*t^5.92)/(g4^7*g5^7) + (g3^7*g5^7*t^5.92)/(g1^7*g2^7) - 5*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g4^7 + t^6.02/(g1^3*g2^3*g3^24*g4^3*g5^3) + t^6.24/(g1^2*g2^2*g3^16*g4^9*g5^9) + t^6.24/(g1^9*g2^9*g3^16*g4^2*g5^2) + (g1^8*g2*g3*t^6.31)/(g4^6*g5^6) + (g1*g2^8*g3*t^6.31)/(g4^6*g5^6) + (g3*g4^8*g5*t^6.31)/(g1^6*g2^6) + (g3*g4*g5^8*t^6.31)/(g1^6*g2^6) - (g1*g2*g4*g5*t^6.39)/g3^6 + t^6.46/(g1*g2*g3^8*g4^15*g5^15) + (2*t^6.46)/(g1^8*g2^8*g3^8*g4^8*g5^8) + t^6.46/(g1^15*g2^15*g3^8*g4*g5) + t^6.68/(g1^21*g2^21) + t^6.68/(g4^21*g5^21) + t^6.68/(g1^7*g2^7*g4^14*g5^14) + t^6.68/(g1^14*g2^14*g4^7*g5^7) + (g1^3*g3^3*t^6.92)/(g2^4*g4^4*g5^4) + (g2^3*g3^3*t^6.92)/(g1^4*g4^4*g5^4) + (g3^3*g4^3*t^6.92)/(g1^4*g2^4*g5^4) + (g3^3*g5^3*t^6.92)/(g1^4*g2^4*g4^4) + (g1^3*g4^3*t^7.)/(g2^4*g3^4*g5^4) + (g2^3*g4^3*t^7.)/(g1^4*g3^4*g5^4) + (g1^3*g5^3*t^7.)/(g2^4*g3^4*g4^4) + (g2^3*g5^3*t^7.)/(g1^4*g3^4*g4^4) + t^7.24/(g1^6*g2^6*g3^20*g4^6*g5^6) + (g1^4*t^7.31)/(g2^3*g3^3*g4^3*g5^3) + (g2^4*t^7.31)/(g1^3*g3^3*g4^3*g5^3) + (g4^4*t^7.31)/(g1^3*g2^3*g3^3*g5^3) + (g5^4*t^7.31)/(g1^3*g2^3*g3^3*g4^3) + g1^14*g3^14*t^7.38 + g1^7*g2^7*g3^14*t^7.38 + g2^14*g3^14*t^7.38 + g1^7*g3^14*g4^7*t^7.38 + g2^7*g3^14*g4^7*t^7.38 + g3^14*g4^14*t^7.38 + g1^7*g3^14*g5^7*t^7.38 + g2^7*g3^14*g5^7*t^7.38 + g3^14*g4^7*g5^7*t^7.38 + g3^14*g5^14*t^7.38 + (g1^11*t^7.39)/(g2^3*g3^10*g4^3*g5^3) + (g1^4*g2^4*t^7.39)/(g3^10*g4^3*g5^3) + (g2^11*t^7.39)/(g1^3*g3^10*g4^3*g5^3) + (g1^4*g4^4*t^7.39)/(g2^3*g3^10*g5^3) + (g2^4*g4^4*t^7.39)/(g1^3*g3^10*g5^3) + (g4^11*t^7.39)/(g1^3*g2^3*g3^10*g5^3) + (g1^4*g5^4*t^7.39)/(g2^3*g3^10*g4^3) + (g2^4*g5^4*t^7.39)/(g1^3*g3^10*g4^3) + (g4^4*g5^4*t^7.39)/(g1^3*g2^3*g3^10) + (g5^11*t^7.39)/(g1^3*g2^3*g3^10*g4^3) + (g3^12*t^7.45)/(g1^2*g2^2*g4^9*g5^9) + (g3^12*t^7.45)/(g1^9*g2^9*g4^2*g5^2) + g1^14*g3^7*g4^7*t^7.46 + g1^7*g2^7*g3^7*g4^7*t^7.46 + g2^14*g3^7*g4^7*t^7.46 + g1^7*g3^7*g4^14*t^7.46 + g2^7*g3^7*g4^14*t^7.46 + t^7.46/(g1^5*g2^5*g3^12*g4^12*g5^12) + t^7.46/(g1^12*g2^12*g3^12*g4^5*g5^5) + g1^14*g3^7*g5^7*t^7.46 + g1^7*g2^7*g3^7*g5^7*t^7.46 + g2^14*g3^7*g5^7*t^7.46 + g1^7*g3^7*g4^7*g5^7*t^7.46 + g2^7*g3^7*g4^7*g5^7*t^7.46 + g1^7*g3^7*g5^14*t^7.46 + g2^7*g3^7*g5^14*t^7.46 + (g1^5*g3^5*t^7.53)/(g2^2*g4^9*g5^9) + (g2^5*g3^5*t^7.53)/(g1^2*g4^9*g5^9) + (g3^5*g4^5*t^7.53)/(g1^9*g2^9*g5^2) + (g3^5*g5^5*t^7.53)/(g1^9*g2^9*g4^2) + g1^14*g4^14*t^7.55 + g1^7*g2^7*g4^14*t^7.55 + g2^14*g4^14*t^7.55 + g1^14*g4^7*g5^7*t^7.55 + g1^7*g2^7*g4^7*g5^7*t^7.55 + g2^14*g4^7*g5^7*t^7.55 + g1^14*g5^14*t^7.55 + g1^7*g2^7*g5^14*t^7.55 + g2^14*g5^14*t^7.55 + (g1^12*t^7.62)/(g2^2*g3^2*g4^9*g5^9) + (g1^5*g2^5*t^7.62)/(g3^2*g4^9*g5^9) + (g2^12*t^7.62)/(g1^2*g3^2*g4^9*g5^9) - (2*t^7.62)/(g1^2*g2^2*g3^2*g4^2*g5^2) + (g4^12*t^7.62)/(g1^9*g2^9*g3^2*g5^2) + (g4^5*g5^5*t^7.62)/(g1^9*g2^9*g3^2) + (g5^12*t^7.62)/(g1^9*g2^9*g3^2*g4^2) + t^7.69/(g1^4*g2^4*g3^4*g4^18*g5^18) + t^7.69/(g1^11*g2^11*g3^4*g4^11*g5^11) + t^7.69/(g1^18*g2^18*g3^4*g4^4*g5^4) + g1^15*g2*g3^8*g4*g5*t^7.77 + g1^8*g2^8*g3^8*g4*g5*t^7.77 + g1*g2^15*g3^8*g4*g5*t^7.77 + g1^8*g2*g3^8*g4^8*g5*t^7.77 + g1*g2^8*g3^8*g4^8*g5*t^7.77 + g1*g2*g3^8*g4^15*g5*t^7.77 + g1^8*g2*g3^8*g4*g5^8*t^7.77 + g1*g2^8*g3^8*g4*g5^8*t^7.77 + g1*g2*g3^8*g4^8*g5^8*t^7.77 + g1*g2*g3^8*g4*g5^15*t^7.77 + (g1^5*g4^5*t^7.78)/(g2^2*g3^16*g5^2) + (g2^5*g4^5*t^7.78)/(g1^2*g3^16*g5^2) + (g1^5*g5^5*t^7.78)/(g2^2*g3^16*g4^2) + (g2^5*g5^5*t^7.78)/(g1^2*g3^16*g4^2) + g1^15*g2*g3*g4^8*g5*t^7.85 + g1^8*g2^8*g3*g4^8*g5*t^7.85 + g1*g2^15*g3*g4^8*g5*t^7.85 + g1^8*g2*g3*g4^15*g5*t^7.85 + g1*g2^8*g3*g4^15*g5*t^7.85 + g1^15*g2*g3*g4*g5^8*t^7.85 + g1^8*g2^8*g3*g4*g5^8*t^7.85 + g1*g2^15*g3*g4*g5^8*t^7.85 + g1^8*g2*g3*g4^8*g5^8*t^7.85 + g1*g2^8*g3*g4^8*g5^8*t^7.85 + g1^8*g2*g3*g4*g5^15*t^7.85 + g1*g2^8*g3*g4*g5^15*t^7.85 + (g1^6*t^7.92)/(g2*g3*g4^8*g5^8) + (g2^6*t^7.92)/(g1*g3*g4^8*g5^8) + (g4^6*t^7.92)/(g1^8*g2^8*g3*g5) + (g5^6*t^7.92)/(g1^8*g2^8*g3*g4) - g1^2*g2^2*g3^16*g4^2*g5^2*t^7.99 - (g4^6*t^8.01)/(g1*g2*g3^8*g5^8) - (g1^6*t^8.01)/(g2^8*g3^8*g4*g5) - (5*t^8.01)/(g1*g2*g3^8*g4*g5) - (g2^6*t^8.01)/(g1^8*g3^8*g4*g5) - (g5^6*t^8.01)/(g1*g2*g3^8*g4^8) + t^8.02/(g1^4*g2^4*g3^32*g4^4*g5^4) - g1^9*g2^2*g3^9*g4^2*g5^2*t^8.07 - g1^2*g2^9*g3^9*g4^2*g5^2*t^8.07 - g1^2*g2^2*g3^9*g4^9*g5^2*t^8.07 - g1^2*g2^2*g3^9*g4^2*g5^9*t^8.07 + (g3^7*g4^7*t^8.14)/(g1^14*g2^14) + (g1^7*g3^7*t^8.14)/(g4^14*g5^14) + (g2^7*g3^7*t^8.14)/(g4^14*g5^14) + (g3^7*g5^7*t^8.14)/(g1^14*g2^14) - (4*t^8.23)/(g1^7*g2^7) - (4*t^8.23)/(g4^7*g5^7) - (g1^7*t^8.23)/(g2^7*g4^7*g5^7) - (g2^7*t^8.23)/(g1^7*g4^7*g5^7) - (g4^7*t^8.23)/(g1^7*g2^7*g5^7) - (g5^7*t^8.23)/(g1^7*g2^7*g4^7) + t^8.25/(g1^3*g2^3*g3^24*g4^10*g5^10) + t^8.25/(g1^10*g2^10*g3^24*g4^3*g5^3) - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.38 + (g3^8*t^8.45)/(g1^6*g2^6*g4^6*g5^6) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.46 - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.46 - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.46 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.46 + t^8.47/(g1^2*g2^2*g3^16*g4^16*g5^16) + (2*t^8.47)/(g1^9*g2^9*g3^16*g4^9*g5^9) + t^8.47/(g1^16*g2^16*g3^16*g4^2*g5^2) + (g1^8*g2*g3*t^8.53)/(g4^13*g5^13) + (g1*g2^8*g3*t^8.53)/(g4^13*g5^13) + (g1*g3*t^8.53)/(g2^6*g4^6*g5^6) + (g2*g3*t^8.53)/(g1^6*g4^6*g5^6) + (g3*g4*t^8.53)/(g1^6*g2^6*g5^6) + (g3*g5*t^8.53)/(g1^6*g2^6*g4^6) + (g3*g4^8*g5*t^8.53)/(g1^13*g2^13) + (g3*g4*g5^8*t^8.53)/(g1^13*g2^13) + (g1^8*t^8.62)/(g2^6*g3^6*g4^6*g5^6) + (g2^8*t^8.62)/(g1^6*g3^6*g4^6*g5^6) + (g1*g4*t^8.62)/(g2^6*g3^6*g5^6) + (g2*g4*t^8.62)/(g1^6*g3^6*g5^6) + (g4^8*t^8.62)/(g1^6*g2^6*g3^6*g5^6) + (g1*g5*t^8.62)/(g2^6*g3^6*g4^6) + (g2*g5*t^8.62)/(g1^6*g3^6*g4^6) + (g5^8*t^8.62)/(g1^6*g2^6*g3^6*g4^6) + t^8.69/(g1*g2*g3^8*g4^22*g5^22) + (2*t^8.69)/(g1^8*g2^8*g3^8*g4^15*g5^15) + (2*t^8.69)/(g1^15*g2^15*g3^8*g4^8*g5^8) + t^8.69/(g1^22*g2^22*g3^8*g4*g5) - g1^4*g2^4*g3^4*g4^4*g5^4*t^8.77 + t^8.91/(g1^28*g2^28) + t^8.91/(g4^28*g5^28) + t^8.91/(g1^7*g2^7*g4^21*g5^21) + t^8.91/(g1^14*g2^14*g4^14*g5^14) + t^8.91/(g1^21*g2^21*g4^7*g5^7) + (g1^5*g3^19*t^8.91)/(g2^2*g4^2*g5^2) + (g2^5*g3^19*t^8.91)/(g1^2*g4^2*g5^2) + (g3^19*g4^5*t^8.91)/(g1^2*g2^2*g5^2) + (g3^19*g5^5*t^8.91)/(g1^2*g2^2*g4^2) + (g1^2*t^8.92)/(g2^5*g3^5*g4^5*g5^5) + (g2^2*t^8.92)/(g1^5*g3^5*g4^5*g5^5) + (g4^2*t^8.92)/(g1^5*g2^5*g3^5*g5^5) + (g5^2*t^8.92)/(g1^5*g2^5*g3^5*g4^5) + (g1^12*g3^12*t^8.99)/(g2^2*g4^2*g5^2) + (g1^5*g2^5*g3^12*t^8.99)/(g4^2*g5^2) + (g2^12*g3^12*t^8.99)/(g1^2*g4^2*g5^2) + (2*g1^5*g3^12*g4^5*t^8.99)/(g2^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.99)/(g1^2*g5^2) + (g3^12*g4^12*t^8.99)/(g1^2*g2^2*g5^2) + (2*g1^5*g3^12*g5^5*t^8.99)/(g2^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.99)/(g1^2*g4^2) + (g3^12*g4^5*g5^5*t^8.99)/(g1^2*g2^2) + (g3^12*g5^12*t^8.99)/(g1^2*g2^2*g4^2) - t^4.62/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.62/(g1^3*g2^3*g3^10*g4^3*g5^3*y) - t^6.84/(g1^2*g2^2*g3^2*g4^9*g5^9*y) - t^6.84/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + t^7.23/(g1*g2*g3^8*g4^8*g5^8*y) + t^7.23/(g1^8*g2^8*g3^8*g4*g5*y) + (g1^2*g2^2*g3^2*g4^2*g5^2*t^7.38)/y + t^7.45/(g1^7*g2^7*g4^7*g5^7*y) - t^7.85/(g1^6*g2^6*g3^6*g4^6*g5^6*y) + t^8.24/(g1^5*g2^5*g3^12*g4^5*g5^5*y) + (g1^5*g2^5*t^8.39)/(g3^2*g4^2*g5^2*y) + (g4^5*g5^5*t^8.39)/(g1^2*g2^2*g3^2*y) + t^8.46/(g1^4*g2^4*g3^4*g4^11*g5^11*y) + t^8.46/(g1^11*g2^11*g3^4*g4^4*g5^4*y) + (g3^6*t^8.61)/(g1*g2*g4*g5*y) - t^8.63/(g1^4*g2^4*g3^18*g4^4*g5^4*y) + (g1^6*t^8.69)/(g2*g3*g4*g5*y) + (g2^6*t^8.69)/(g1*g3*g4*g5*y) + (g4^6*t^8.69)/(g1*g2*g3*g5*y) + (g5^6*t^8.69)/(g1*g2*g3*g4*y) + (g1^6*g4^6*t^8.78)/(g2*g3^8*g5*y) + (g2^6*g4^6*t^8.78)/(g1*g3^8*g5*y) + (g1^6*g5^6*t^8.78)/(g2*g3^8*g4*y) + (g2^6*g5^6*t^8.78)/(g1*g3^8*g4*y) - t^8.85/(g1^3*g2^3*g3^10*g4^10*g5^10*y) - t^8.85/(g1^10*g2^10*g3^10*g4^3*g5^3*y) + (g3^7*t^8.92)/(g1^7*y) + (g3^7*t^8.92)/(g2^7*y) + (g3^7*t^8.92)/(g4^7*y) + (g3^7*g4^7*t^8.92)/(g1^7*g2^7*y) + (g3^7*t^8.92)/(g5^7*y) + (g1^7*g3^7*t^8.92)/(g4^7*g5^7*y) + (g2^7*g3^7*t^8.92)/(g4^7*g5^7*y) + (g3^7*g5^7*t^8.92)/(g1^7*g2^7*y) - (t^4.62*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.62*y)/(g1^3*g2^3*g3^10*g4^3*g5^3) - (t^6.84*y)/(g1^2*g2^2*g3^2*g4^9*g5^9) - (t^6.84*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + (t^7.23*y)/(g1*g2*g3^8*g4^8*g5^8) + (t^7.23*y)/(g1^8*g2^8*g3^8*g4*g5) + g1^2*g2^2*g3^2*g4^2*g5^2*t^7.38*y + (t^7.45*y)/(g1^7*g2^7*g4^7*g5^7) - (t^7.85*y)/(g1^6*g2^6*g3^6*g4^6*g5^6) + (t^8.24*y)/(g1^5*g2^5*g3^12*g4^5*g5^5) + (g1^5*g2^5*t^8.39*y)/(g3^2*g4^2*g5^2) + (g4^5*g5^5*t^8.39*y)/(g1^2*g2^2*g3^2) + (t^8.46*y)/(g1^4*g2^4*g3^4*g4^11*g5^11) + (t^8.46*y)/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g3^6*t^8.61*y)/(g1*g2*g4*g5) - (t^8.63*y)/(g1^4*g2^4*g3^18*g4^4*g5^4) + (g1^6*t^8.69*y)/(g2*g3*g4*g5) + (g2^6*t^8.69*y)/(g1*g3*g4*g5) + (g4^6*t^8.69*y)/(g1*g2*g3*g5) + (g5^6*t^8.69*y)/(g1*g2*g3*g4) + (g1^6*g4^6*t^8.78*y)/(g2*g3^8*g5) + (g2^6*g4^6*t^8.78*y)/(g1*g3^8*g5) + (g1^6*g5^6*t^8.78*y)/(g2*g3^8*g4) + (g2^6*g5^6*t^8.78*y)/(g1*g3^8*g4) - (t^8.85*y)/(g1^3*g2^3*g3^10*g4^10*g5^10) - (t^8.85*y)/(g1^10*g2^10*g3^10*g4^3*g5^3) + (g3^7*t^8.92*y)/g1^7 + (g3^7*t^8.92*y)/g2^7 + (g3^7*t^8.92*y)/g4^7 + (g3^7*g4^7*t^8.92*y)/(g1^7*g2^7) + (g3^7*t^8.92*y)/g5^7 + (g1^7*g3^7*t^8.92*y)/(g4^7*g5^7) + (g2^7*g3^7*t^8.92*y)/(g4^7*g5^7) + (g3^7*g5^7*t^8.92*y)/(g1^7*g2^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55677 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_1\tilde{q}_1$ 0.8923 1.1009 0.8105 [X:[], M:[0.7357, 0.6684], q:[0.7258, 0.6322, 0.6322], qb:[0.6058, 0.6051, 0.6051], phi:[0.5485]] t^2.01 + t^2.21 + t^3.29 + 3*t^3.63 + 6*t^3.71 + 2*t^3.99 + t^4.01 + 2*t^4.07 + t^4.21 + t^4.41 + 6*t^5.28 + t^5.3 + 6*t^5.36 + 3*t^5.44 + t^5.5 + 3*t^5.64 + 6*t^5.72 + 3*t^5.84 - 11*t^6. - t^4.65/y - t^4.65*y detail